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Abstract
When performing batching, the governing goal is to keep give-away at an acceptable level. Giveaway being defined
as weight that is added or absent from a given target weight. The product being packaged varies in dimension and
weight, and as such it presents a challenge when matching multiple products to fit a target total weight. The current
batching setup uses a cell consisting of multiple robots and multiple batching packages, with a product conveyor in
the middle and a package conveyor on each side, moving independently. The package can only leave the cell by
meeting the weight requirement. This presents additional challenges, as there is a risk of packages at the beginning of
the conveyor reaching the weight requirement long before it can leave the cell, and thus the cell runs the risk of being
unable to batch. Currently, this is solved by using strict distribution keys, coded into the system, making it highly
inflexible to changes in the product weight distribution. In order to avoid down time, increase flexibility, remove the
strict distribution keys and minimise giveaway, this project will investigate the implementation of a reinforcement
learning algorithm to achieve the aforementioned goals.
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1. General Introduction
When performing batching of products that have varying
weight, the primary goal is to achieve a target package
weight with minimal deviation. In an effort to achieve
the goal weight, companies utilise rigid distribution
rules that require tuning for each specific batch, with
different weight distributions. In an effort to reduce the
setup time for a new batch, and possibly further reduce
giveaway, this article investigates the implementation of
reinforcement learning (RL) in a batching environment.

Moreover, an imprecise batching process can lead
to both positive and negative giveaway. The positive
giveaway is what the customer gets in excess, the
negative giveaway is what the customer is losing.
To protect the consumers from buying under-filled
products, the European Union Directive has made a
legislation that regulates the tolerable negative error.
This is the allowable amount with which a product
can fall under the weight specified on package. This
legislation is known as e-weighing [1].

The specified requirements, acquired from the European
Council Directive legislation [2], defines considerations
for acceptable batching. This is acceptable if the mean
value

X̄ =

∑
Xi

n

of the actual contents Xi of number n packages in a
batch is greater than the value:

Qn −
s√
n
· t(1−α) (1)

where the indicated weight for each package, called
Nominal Quantity, is denoted Qn and t1−α = 0.995
confidence level of a Student distribution with V = n−1
degree of freedom. The value of the standard deviation
s of the actual contents of the batch can be estimated
by the following calculations:

The sum of the squares of the measured values:
i−1∑
i=n

(xi)
2 (2)

The square of the sum of the measured values:(
i=1∑
i=n

Xi

)2

(3)

Then:
1

n

(
i=1∑
i=n

Xi

)2

(4)

The corrected sum

SC =
i−1∑
i=n

(xi)
2 − 1

n

(
i=1∑
i=n

Xi

)2

(5)
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The estimated variance:

V =
SC

n− 1
(6)

The estimated value of the standard deviation is:

s =
√
V (7)

It is desired through the development stage presented in
this article to achieve a viable RL solution that can be
implemented in a product batching scenario and that it
is able to abide by the boundaries set by the e-weighing
regulations without gross positive giveaway.

2. Example batching method
One batching method, patented by Scanvaegt A/S,
calculates the probability of occurrence of the products
weight, and is done so with a continuously updated
normal distribution of the products entering the system.
This batching method builds on top of the accumulation
weighing method [3], which is a simpler method of
batching and used when products are moving on a
conveyor leading to an allocation machine. The products
are weighed on a dynamic weigher and then placed
into selective bins for build-up of portions, until the
bin exceeds the target weight, and are discharged into
trays. It is generally understood that the last product
discharged to the bin, which is to the bring the total
weight of the portion to the desired target weight,
will bring the bin above the target weight, resulting
in giveaway, as it will be an almost lucky coincidence
if the arriving new product will fit the portion weight
precisely. Furthermore, to try and correct the overweight
error, the accumulation weighing method selectively
match the above and below average product-weights to
a certain degree of success[3].

The batching method patented by Scanvaegt, builds on
top of the accumulation weighing method by predicting
the weight of the arriving products with a more accurate
distribution. Said distribution is obtained by registering,
the weight of previous (50-300) products entering the
batching system with the use of a "serial register"
using the type first in, first out (FIFO), to form a
histogram, and is continuously updated to eventual shifts
in the incoming supply. With this adaptive and fine-
tuned representation of the distribution it is possible to
calculate a probability function, with higher certainty,
for the occurrence of new products and their ability to
fit partly filled trays. Moreover this method makes the
pairing of deviating products more precise. [3]

An example of this, could be when placing the first
product into one of the empty trays in the physical
setup. This placement can be done uncritically, but
each subsequent product that is to be placed will be
evaluated in regards to how the placement will affect
the probability function in respect to successfully filling
the tray closer to the target weight. The probability
function of the two products is derived by multiplying
their respective probabilities together, to form a specific
weight, where each probability is given from the
probability density function. Calculating the probability
for three or more follow the same procedure. With these
calculations it is possible to have a representation of all
the probabilities for the summed up products having
different weights.[3]

It is important to know said calculations are not directly
utilised for batching to the desired target weight, but
rather for calculating the probability function of the
weight for the number of missing products, backwards
from the target weight to zero, in all trays, as this leads
to better placement of the products.[3]

Additionally undisclosed parameters are adjusted as
well to increase precision of the batching algorithm.

A way to decrease the number of parameters which
are to be tuned when adjusting to the eventual shifts
in the weight distribution of the products would be
to utilise RL, that would be able to adjust without
human intervention or manual tuning at any point, to
changes in the product distribution or new production
environments.

The remainder of this article, will explore the imple-
mentation of RL algorithms in a fictive manufacturing
environment.

3. Reinforcement Learning
RL is the introduction of a learning agent in an
environment, seeking to optimise reward, based on
actions taken. In this article, the particular RL method
applied is known as Q-learning. In Q-learning, an
update based adaptation of the Bellman equation, seen
in equation 8, where the Q-value to a state, given an
action, is expressed through an immediate reward, and
a prediction of future Q-values.

Q(s, a) = Q(s, a) + α(r + γ(max(Q(s′, a′)−Q(s, a))
(8)

Where Q(s, a) denotes Q-value for the state, s, given
action a. α is the learning rate parameter, r is the
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immediate reward, max(Q(s′, a′)) is the maximum
predicted Q-value, given the next state, s′, and the action
that will lead to said maximum Q-value, s′.

Q-learning utilises the epsilon-greedy policy. In essence,
this is the separation between choosing actions based
on exploration, random actions with a probability of ε,
or choosing actions believed to give a better outcome,
greedy actions.

In order to implement RL in the batching setup, the
environment has to be converted to a model that can be
progressed in episodes or time-steps. This, alongside an
increase in the complexity of the learning algorithm, is
done during several iterations. In iteration 1, Q-learning
in a finite environment and brute force algorithms were
explored. In iteration 2, the environment is expanded
and consequently the Q-learning algorithm as well, deep
Q-learning is introduced. In iteration 3, the environment
is expanded further, and methods from Mnih et. al. are
implemented to increase the performance[4].

4. Development
4.1 Environment definition
As mentioned, the environment has to be converted into
a software structure.

• The conveyor belt that transports the product into,
and out of, the packaging cell.

• The products are the items needed to be packaged
inside the cell.

• The trays are the packages, in where the products
are to be placed.

• The buffer represents a variable number of
products, that the system will could be able to see
before being able to interact with.

• The target weight is the weight of a tray at which
giveaway is 0

• The robotic manipulator which will be referred
to as the agent.

• The giveaway is the extra weight or the lack in
weight a tray has when it is deemed finished.

• The distribution of the products with a given mean
and span.

The first 4 items in the list, are the state in any given
time-step, presented to the learning agent in the shape
as [T1, T2, [V P1, V P2, V P3, V P4][Buffer]], where T1
and T2 are tray 1 and tray 2 respectively, V Pn is
visible product, i.e. the agent can interact with it, and
buffer represents the products that can be seen but not
interacted with. All data is presented as integer values.

Of the remaining 3 points on the list, one is the agent
itself, one is the basis for reward and the last one a
hidden parameter of the environment.

It should be noted that even though the buffer was ready
for implementation and testing, the iteration process did
not progress far enough for it to be implemented.

4.2 Tuning parameters
In the various iterations presented in this article, several
tuning parameters exist. These include, but are not
limited to:

εinitial = {exploration rate} (9)

εdecay = {exploration decay factor} (10)

εmin = {min. exploration rate} (11)

α = {step-wise update rate} (12)

γ = {weight of prediction} (13)

4.3 Reward function
Throughout all iterations, the reward function is based
on the giveaway of the individual tray, and can be seen
in equation 14

r =
1√

(Target weight− trayweight)2
(14)

This function, provides the value for the parameter r
seen in equation 8.

4.4 Iteration 1
Iteration 1 inherits the state description from section
4.1, and as such a learning agent can interact with
any product on the conveyor at any time-step. The
environment consists only of four products, with the

Fig. 1 Product batching scenario for Iteration 1.
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weight values of [4, 3, 7, 6], to be batched into two
trays, each tray having a target weight of 10. Figure
1 showcases this particular scenario. The Q-learning
method applied, utilises what is known as a Q-table, an
example of which can be seen in table I, where T1 refers
to tray 1, and V P1, as previously mentioned, visible
product 1, and as such, an action is designated by the
product and the tray into which it is placed.

State
Action

T1(V P1) T1(V P2) T1(V P3) T1(V P4)

25 -5 0.0 0.0 -0.1
26 0.0 -5 0.0 -0.1
27 0.0 0.0 0.0 -0.1
28 0.0 0.0 0.0 1

Tab. I An example Q-table.

The values within the Q-table are updated during an
episode of training, using equation 8. In iteration 1, an
episode of training consists of packing the 4 available
products. The optimal solution of the environment, is
an equal distribution of 10 in each tray, and this was
achieved using the tuning parameters shown on figure
2. The plot also shows the convergence towards zero
giveaway, and that a stable Q-table had been achieved
at approximately 272 time-steps.

Fig. 2 The final result of iteration 1 with affixed tuning
parameters.

4.5 Iteration 2A
In iteration 2, as previously mentioned, the complexity
of the environment is increased. The complexity step
in this iteration, is an increase of the product variance
and the combinations of products that can be seen. On
the agent side, there is also a change in complexity;
in the real world, the machinery operates on a FIFO
basis, and as such the environment model should reflect

Fig. 3 Product batching scenario for iteration 2.

this. Therefore the action set is decreased. From this
follows, the states presented to the agent in this iteration,
take the form: [T1, T2, [V P1]], where the change is the
amount of visible products, and an introduction of the
non-visible products. The non-visible products are there,
as the complete state still contains 4 different products,
but are not shown to the agent. A visualisation of this
batching scenario can be seen in figure 3.

As mentioned, the action set is decreased, from 8 to 2,
as the action set is determined by trays × products.
The environment change is the primary challenge in
this iteration. As the amount of possible products, and
product combinations increase, as does the Q-table.
From this follows an increase in training time needed.
For the agent to visit all possible states, and update
the Q-table enough times in order for a an algorithm
to perform the actions needed to arrive at the optimal
solution for each combination, the learning time-steps
becomes increasingly large relative to the µ and σ of
the product distribution. Therefore, as it can be observed
in figure 4, the algorithm is highly unstable and does not
converge. The yielded results are poor, since the trays
showcased as an example in figure 4, do not meet the
expected resulting weight. The poor results indicate the
necessity of a different approach involving RL.

4.6 Iteration 2B
Having the Q-learning method proved to be ineffective
when the weight of the products to be packed varies
across episodes, it was replaced with Deep Q-Network
(DQN). DQN is a combination of Q-learning and
Artificial Neural Networks (ANN). Unlike Q-learning
which makes use of a continuously increasing Q-table,
DQN works by approximating the optimal action-value
function. Value functions indicate how good it is for
the agent to be in a particular state. This estimation
is done though a Neural Network (NN) structure that
in the hereby context maps weight values to agent
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Fig. 4 Plot showcasing the behaviour of the Q-learning
algorithm in the context of Iteration 2

actions in order to minimise the giveaway on packaged
products. For designing the DQN, the following have to
be considered:

1) Model Type: Originally, the ANN model type
for DQN is the convolutional neural network
(CNN). This model type however is common for
image processing applications[4]. Therefore, the
Multi Layer Perceptron (MLP) is selected for
the product packaging application, as it offers
flexibility in regards to input data[5].

2) Activation Function: as found by Krizhevsky et al.
[6], the ReLu activation function can in a similar
case as the one described in the hereby article
lower the training time needed.

3) Loss function: as recommended in the loss
function tutorial by Jason B. [7], it is chosen to
be mean squared error (MSE).

4) Optimisation algorithm: as the defined problem
by Iteration 2 is large in terms of data (various
product weights), "Adam" was found to be the
right choice for the hereby scenario [8].

5) Amount of neurons in the hidden layer (network
width): subject to testing.

6) Amount of hidden layers (network depth): subject
to testing.

In order to gain insight in the network architecture
design, the depth and width of the NN, several tests
were conducted. These tests consisted of training the
network with different architectures. Firstly, the width
of the network was tested, i.e. the amount of neurons

in a layer. Secondly, the depth of the network was
tested, i.e. the amount of layers. The initial results,
for the distribution used in iteration 2, showed that
a combination of 32 neurons and 2 layers performed
best. However, an additional test was then conducted
using the distribution that will be applied in iteration
3, in order to gain an understanding of the importance
of design vs. distribution, and these results pointed
towards an optimal architecture of 8 neurons, and two
layers for this environment. The results of the tests can
be seen in figure 5, where the aforementioned design
with 8 neurons clearly stands out from the remaining
configurations. In regards to the two layer design, the
results can be seen in figure 6, where it can be observed
that two and three layers outperform one layer, in
regards to speed of convergence. As two and three layers
eventually converge similarly, two layers is chosen to
avoid future overfitting and unnecessary complexity.

Fig. 5 Plot showcasing the behaviour of the Q-learning
algorithm, with affixed neuron count. On the left side of the
graphs, is the plotted reward, on the right the giveaway

4.7 Iteration 3
In iteration 3, the complexity is again increased. The
environment up until now has consisted of two trays, and

5



Fig. 6 Plot showcasing the behaviour of the Q-learning
algorithm, with affixed layer count. On the left side of the
graphs, is the plotted reward, on the right the giveaway.

episodes of 4 products, with a product distribution of,
relative to the iteration 3 values, small µ and σ. In this
iteration, the amount of trays is increased to 4, and the
products per episode to 500. A substantial change in the
iteration 3 environment compared to the predecessors is
the product distribution. Now, µ and σ are increased to
253 and 43 respectively, providing a much wider distri-
bution from which product weights can occur. Alongside
these environment changes, an additional change, is
the replacement of trays considered full, with empty
ones. With these changes implemented the environment
moves another step closer to a real production setup. The
products per episode, or maximum time-steps parameter,
is technically a tuning parameter, more than it helps
mimic reality. In a real world setup, the batches are
typically much larger, but the desirable learned behavior
here, is hitting the target weight of a tray. As such, the
maximum episodes is set to 500, in order to generate
enough reward producing actions, actions that lead to
trays being removed, for the replay and tuning of the
network. The concept of replay, as just mentioned, is to
gather experience rather than tuning on the spot, effec-
tively decoupling the experience gathering and training.
This method stems from Mnih et. al. who used it to
gain "Human-level control through deep reinforcement
learning"[4]. The two primary "tricks" employed in the
article, is fixed target NN and experience replay. Expe-
rience replay helps in the sense that experiences can be
used several times to tune the network, rather than just
tuning the network once, upon having the experience.
Fixed target NN decrease time spent learning, as the
target Q-values stay stationary for a fixed amount of
time-steps. With these methods applied to the DQN
from iteration 2, the agent became competent within the
now more complex environment. Additional architecture
adjustments were however needed, due to the changes
applied. These adjustments were performed based on
tests similar to those performed during iteration 2B,
and from this the final design of 32 neurons, 2 layers

was chosen. The DQN was trained for 1.5 million time-
steps, but gross overfitting occurred, and the best results
were achieved after 100.000 time-steps. The reward and
give away plot for the the aforementioned time-steps,
can be seen in figure 7, where the average giveaway
for a duration of approximately 100 episodes, 50.000
time-steps or products packaged, stays under 1.000.
This is significant, as the giveaway is less than 8 per
finished tray, following equation 15, which provides an
estimate of the average giveaway per tray, if the episode
average was 1000. The network weights and design that
provided these results were then saved and used for the
final tests.

1000
µ×timesteps
targetweight

= 7.90 (15)

Fig. 7 The reward and giveaway plot for the final DQN.

5. Conclusion
The hereby article presented an approach to tackle the
optimisation problem raised by product batching when
there is a certain amount of variation in weight across
products depending on a given normal distribution,
and giveaway (goal weight overshoot/undershoot) is
desired to be avoided. The iterative development process
provided insights into Q-learning methods, in what
scenarios they are beneficial to use (during iteration 1).
Iteration 2 made the transition from Q-learning to the
DQN method as described in Iteration 3 which ended
up generating the following final results.
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5.1 Test results

Fig. 8 A line graph displaying the e-weighing value and the
mean of the sample. Accepted score is mean > e-weighing
value

By using the DQN method, 100 episodes of 500
products were batched into ∼125 trays per episode.
From each episode, a random sample of 30 trays is
extracted, and used for calculating the score according
to the e-weighing regulations[2]. The results can be
seen in figure 8, which clearly show that all sampled
trays pass according to the e-weighing regulations,
forming the basis of the conclusion that the current
environment setup of iteration 3 is sufficiently solved.
The average giveaway during the testing was found to be
∼1000g, and considering that each episode consists of
approximately 126 finished trays, making the average
giveaway equal to less than 10grams per tray, per
episode, and can be seen in figure 9.

5.2 Future work
The most complex batching problem defined during
the development process is in Iteration 3. The problem
definition however, only captures the details of a real-
life batching scenario at a conceptual level only. It is
natural to expect that the developed algorithms might
behave differently or unexpectedly when applied on a
system composed of:

• A conveyor feeding in the products
• The movement of the conveyors feeding in the

trays
• The possibility that some products might not fit the

target weight goal set for trays
• The position of the batching robotic manipulators
• The reachable space of the robotic manipulators
• Sudden changes in the weight distribution of the

products

All these elements have to be considered in future
development. Also, if the iterative approach is kept, this

Fig. 9 The reward per episode and the giveaway during the
iteration 3, final DQN test.

list above can serve as guideline for organising further
iterations, from the system’s complexity perspective.

In addition to Q-learning and DQN methods, there are
also policy-based algorithms. These algorithms model a
direct mapping from states to actions. Instead of using
the estimation of the value function as a baseline for
finding an optimal policy, the policy can be explicitly
represented by its own function approximator [9]. These
methods are advantageous in real world scenario, as
the policy representation can be chosen to fit the task
at hand. Instead of using the estimation of the value
function as a baseline for finding an optimal policy,
the policy can be explicitly represented by its own
function approximator. These methods are advantageous
in real world scenario, as the policy representation can
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be chosen to fit the task at hand. In other words, policy-
based algorithm increases the probability for the agent
to choose good actions and decrease the probability
of actions that lead to end states that are not desired.
Yet another reason to have policy-based algorithms as
subject to further development is use of fewer tuning
parameters than value-based algorithms. [10] Finally,
future iterations should continue working on minimising
the positive giveaway, whilst continuing to abide by the
e-weighing regulations.

5.3 Final conclusion
The application of RL algorithms in a batching envi-
ronment were found to be successful in the limited
implementation investigated in this article. It shows
promise, that the further development of the iterations,
could potentially prove a valuable asset in batching
algorithms, and could reduce giveaway with little to no
human intervention.
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