

Agenda

- Aim of our project
- DCV principle
- Methodology
- Literature review
- Numerical analysis
- Design charts
- Conclusion
- Further work

Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

Design charts

Conclusion

Aim of our project

- Design tools exist for mixing & displacement ventilation
- No design tools and formulas exist for DCV
- Thesis lays groundwork for DCV configuration tool

2 Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

Design charts

Conclusion

DCV principle

PALADAG UNIVERSITY

- Plenum
- Ceiling as a diffuser
 - Active and passive panels
- Pressure difference
- Heat sources ensures mixing

Aim of our project

3 DCV principle

Methodology

Literature review

Numerical analysis

Design charts

Conclusion

Methodology

PALTO PG UNIVERSITY

- Literature review
- Dimensionless numbers
- CFD simulations
- Design charts

Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

Design charts

Conclusion

Literature review

Temperature

- Temperature gradients are compared between different studies
- Values normalised
- Greatest difference 1.5°C
- Not a limiting parameter

DCV principle

Methodology

5 Literature review

Numerical analysis

Design charts

Conclusion

Literature review

Velocity and draught

- Velocity and draught were also compared
- Changes in design charts were shown to cause draught

Aim of our project

DCV principle

Methodology

6 Literature review

Numerical analysis

Design charts

Conclusion

Literature review Velocity and draught

- Velocity and draught were also compared
- Changes in design charts were shown to cause draught

Aim of our project

DCV principle

Methodology

7 Literature review

Numerical analysis

Design charts

Conclusion

Literature review

DCV principle

Methodology

8 Literature review

Numerical analysis

Design charts

Conclusion

Numerical analysis

Heat load intensity

Heat load distribution

Geometry analysis

Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

Design charts

Conclusion

Design charts

- Based on CFD simulations
- Indicate cooling performance

Design chart showing different room geometries.

Average design chart for heat load intensity. Include data from Nielsen and Jakubowska [2009].

Centred vs. one-sided heat load distribution.

Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

10) Design charts

Conclusion

Conclusion

Prototype configuration tool

- Based on data from experiments
- Limited data
- Too complex to make a generalised tool

Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

Design charts

11) Conclusion

Further work

- More simulations for database
- Validate results experimentally
- Final development of tool

Aim of our project

DCV principle

Methodology

Literature review

Numerical analysis

Design charts

Conclusion

Questions?