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Abstract
This project is carried out as a part of the MADE Digital research program, focusing on the Danish meat industry.
It is motivated by a challenge in the process of injecting brine into bacon. This is done to mature, tenderize, and
enhance flavour of the meat. In cooperation with Danish Meat Research Institute (DMRI) and Danish Crown, as
the industrial case, the research project seeks to control the process of injecting brine into bacon using adaptive
machine learning. The project contains the development of an experimental setup, defining the environment for a
Deep Deterministic Policy Gradient Actor-Critic Network (ACN). Using a developed compound of animal-based
gelatine and Sodium Polyacrylate, a simulation model of the environment is based on conducted experiments. The
model is a four dimensional second order polynomial found by multivariate regression. It consists of two control
variables; injection time and injection pressure, and states of mass and volume. The simulation model is used to
train the implemented Actor-Critic Agent. It was found that a composition of 14 % 220 Bloom gelatine, 1.2 %
Sodium Polyacrylate relative to water, was able to absorb up to 28.9 % water. With a target of 15 % mass increase
the composition was a suitable bacon imitator. A vision based numerical integration method was developed, able
to calculate volume of a test object with a 7.1 % overestimation. The ACN was capable of adapting a model to a
simulated environment with different parameters. It produced a mean of 14.94 % mass increase and standard deviation
of 2.59 %. This result was achieved with starting masses drawn from a normal distributions of N (80.5 g, 4.79 g).
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1. Introduction
In the meat industry, a brine solution is added to
bacon to mature, tenderize, and enhance the flavour
of the meat. Brine is a salt-mix solution consisting of
phosphate, nitrate, and sugar or flavouring.

Two methods of curing bacon are immersion curing
and needle based injection. (i) in immersion curing, the
bacon is soaked for a specified time period, and (ii)
needle based injection where needles are inserted, and
pressurised brine is forced into the bacon [1]. Immersion
curing secures the most uniform distribution of the
brine. However, this is a more time consuming process.
Therefore the needle based injection method is preferred
despite the distribution of the brine being less uniform.
Traditional needle based injection is displayed on Fig. 1.

The needle based injection process is difficult to control
due to high product variation. If too much brine is
injected, there is risk of washing out the proteins as
a result of a too high salt concentration [2]. To avoid

Fig. 1 (1) The needles are forced into the meat, and the brine
is injected. (2) As the needles travel down into the meat brine
is injected continously. (3) The needles reach the bottom, and
reverse the direction of travel. (4) The brine is collected in
the holes, as the needles are pulled up. (5) When the needles
leave the meat, an amount of brine will escape from the meat.

this, less brine is injected as it is not possible to control
the distribution of the brine, when using current needle
based injection technology.

1

mailto:mnar12@student.aau.dk
http://www.mechman.m-tech.aau.dk/


Due to the variation in meat, an adaptable model is
needed. One domain of adaptable models is reinforce-
ment learning, which has shown a great potential within
technical control problems [3].

The research carried out in this paper is based on similar
research from the Danish Meat Research Institute
(DMRI) and the MADE Digital project. This leads
to a natural similarity between some of the research
objectives, as well as in the design of an experimental
setup.

2. Research Objectives
The following research objectives were identified, and
will be addressed in the following sections.

1) Develop an experimental setup that can measure
states and take actions in the brine injection
process.

2) Develop a compound that can imitate bacon.
3) Develop a vision system that is able to determine

the volume of the test objects.
4) Implement an Actor-Critic Network algorithm and

develop a simulation environment.
5) Integrate subsystems in ROS.

This research does not strive towards an optimization of
the throughput time.

3. Development of Experimental Setup
In order to train on the reinforcement learning algo-
rithm, a physical experimental setup is needed. The
setup presented in the following, is heavily inspired by
an experimental setup at the DMRI facilities in Taastrup,
Denmark, where similar research is conducted.
The setup consists of a combination of stock compo-
nents and custom designed components. A 3D CAD
rendering of the experimental setup at Aalborg Univer-
sity can be seen on Fig. 2.

The setup is able to control the desired actions along
with detecting the relevant states of the test objects.
When doing brine injection, two parameters are used
to control the process, injection pressure and injection
time. These two parameters are combined as a set, and
are classified as the action a reinforcement learning (RL)
algorithm will take. To control these actions, a fluid
system is developed.
The RL algorithm also needs some information about
the current state of the test objects, these are defined by
a set of volume and mass measurements of the specific
test object. In order to obtain the current states of the

Fig. 2 3D CAD rendering of the experimental setup at
Aalborg University

test objects, a high-precision scale and multiple cameras
are included for mass and volume detection respectively.
Tab. I displays the different components divided into
categories.

Category Component (Manufacturer, Comment)

Fluid System

Injection Needle (Charbroil, marinade needle)
Injection Needle Fixture (Custom Design)
Pneumatic Valve (MetalWorks "Regtronic")
Magnet Valve (RS, servo-assisted)
Relay (Danbit)
KUKA LWR 4 (KUKA, needle manipulator)

Vision ASUS Xtion Pro (ASUS)
Kinect v2 (Microsoft)

Mass detection KERN KB 10K0.5N (KERN, 0.05 g precision)
Drain Plate (Custom Design)

Tab. I Components used for experimental setup at Aalborg
University.

4. Development of Bacon Imitation Compound
Due to the relatively large amount of testing needed
to train an algorithm, it has been necessary to find
an alternative to the bacon, used at DMRI. For this,
inspiration have been taken from forensic ballistic
science. In this branch of science, a gelatine solution,
mixed from animal-based gelatine, is often used to
imitate ballistic impact with humans, which is equivalet
to pork and its tissue [4]. The bacon processed in the
industrial case is dead meat. It is anticipated that there
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is a difference between living and dead tissue, however,
it shows that imitating dead tissue is not a well explored
field of study. Therefore, gelatine, as used to simulate
ballistic impact, will also be applied in this project.
Furthermore, the application of gelatine based test
objects, allows for the use of smaller test objects, in
this case cubes measuring 50x50x50 mm. Equipment
allows for the making of 32 test objects per batch. These
test objects will however be single injection objects, and
not multi-injection as done in the industrial case. Initial
experiments showed, that a compound consisting of only
gelatine does not meet the demands of the industrial
case, why an additive to increase the water absorption
is introduced. This additive is Sodium Polyacrylate,
categorised as a Superabsorbant Polymers (SAP).

4.1 Test Object Preparation
A series of experiments showed that the way the objects
are mixed and prepared is important in order to obtain
test objects with uniform properties.
For the first step of the mixture, water, gelatine
powder, a power drill (with attached whisk), and a
2 L Polypropylene (PP) beaker is needed. The water
is stirred. and gelatine powder is slowly poured into the
water in order to avoid lumps. Afterwards the solution is
stirred for approximately 30 s, reaching a homogeneous
state. SAP powder is slowly added to the mixture during
continuous stirring. This turns the mixture into semi-
solid state. Compartments in a mould are filled, while
gentle stamping of the contents of the compartments
occurs. The stamping process has through trials shown
to improve the test objects mechanical properties.

All test objects are stored at 5 ◦C for 24-48 hours before
use. During storage, the mould is tightly wrapped in a
plastic bag in order to minimize condensate absorbed
by the objects.

4.2 Experimental Procedures and Results
32 different compounds are tested in order to determine
a suitable composition for the target of 15 % mass
increase post injection.

The object is weighed prior to the injection, using the
high precision scale. The needle is then inserted so that
the outlet nozzles are approximately in the center of
the test object. The injection is carried out with a water
pressure of two bars and a duration of approximately
one and a half second. The object is once again weighted
immediately after injection.

The results of the test indicated, that a composition
consisting of 14 % gelatine powder and 1.2 % SAP
powder, relative to water, is able to absorb up to a mass
increase of 28.9 %. Thus a suitable compound for brine
injection experiments has been found, as both under-
and over-absorption is possible. An issue regarding
increasing batch sizes appeared, resulting in the water
absorption of the final objects being reduced by up to
50 %.

5. Development of Vision System
Being able to detect changes in volume is a desirable
ability in order to monitor the distribution of the brine
in the meat. Change in mass is measured by the high-
precision scale, and change in volume is detected by
point clouds generated by two 3D cameras.

5.1 Camera Calibration
Two 3D cameras are included in the setup, and these
needs to be calibrated in order to obtain useful data.
One important aspect when applying adaptive learning
to a process, is to obtain good and consistent data. Two
types of camera calibrations are performed, (i) intrinsic
calibration, and (ii) extrinsic calibration.

The intrinsic calibration corrects the focal length varia-
tion and lens imperfections that naturally exists in every
camera. Through the intrinsic calibration, parameters
such as an accurate focal length and distortion parame-
ters are found [5]. As intrinsic calibration is a standard
step in a computer vision, a variety of ROS toolboxes
are available. For the purpose of the cameras used in this
setup, the package camera_calibration is used for the
ASUS Xtion Pro camera [6] and kinect2_calibration
for the Microsoft Kinect v2 camera [7].

The extrinsic calibration is done in order to find
the transformation from the robot base frame to
a 3D camera. It is carried out by applying the
calibration driver calib_handeye_kinect2 [8] [9]. The
robot base frame and the camera frame perceive the
world coordinates differently as displayed on Fig. 3.

In order to obtain usable point clouds, the robot base
frame is used as a common reference. Therefore, all
points in the point clouds undergoes the transformation
displayed in Eq. 1.

BPi =
B
Cam T ·Cam Pi (1)

Even when having performed the two calibrations, an
error between the two point clouds occur. To minimise
this, an Iterative Closest Point (ICP) optimisation
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B
CamT ·Cam Pi

Camera Frame Robot Base Frame

CamPi

BPi

Fig. 3 Point in the camera frame CamP
i is transformed

to the point in the robot base frame BPi using the
wanted transformation B

CamT . Note that this is a general
representation using three points.

algorithm is applied. After performing ICP, there was
still an error when capturing point clouds from test
objects, likely due to the optical properties of them. As
the Kinect v2 showed better results, it was decided to
only uses this for the volume calculations.

5.2 Volume Calculation Based on Point Cloud Data
The approach selected for volume calculation is a
combination of numerical integration and binning.
Having divided all the points into different bins, the
volume can be calculated using Eq. 2.

V =
n∑

i,j=1

zBinAvg(i, j) · intervalx · intervaly (2)

Here, the zBinAvg is the average z-value of the points
in each bin, taking the offset from the origin of the
coordinate system to the bottom of the object into
account, and intervali is the side lengths of bins.

As binning is a type of discretisation of the object,
the method is not completely accurate. One thing to
consider is the number/size of the bins the points are
divided into. If the bin size is too small, a situation
where empty bins are present can occur. The correlation
between bin size and the calculated volume can be seen
in Fig. 4.

To secure robustness in the method, a constant number
of bins chosen to be 60. As can be seen on Fig. 4, this
is a compromise between the accuracy of the calculated
volume and the number of empty bins. In a finalized
solution, the bin size could potentially be set to a fixed
distance. Having 60 bins per axis this results in a bin
size of 0.45 mm.

Having specified the different values, the average height
of the test object above the drain plate can be seen in
Fig. 5. This enables the possibility to detect the volume
before and after the injection thereby getting the volume
increase for the test object.
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Fig. 4 Volume as a function of bins.
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Fig. 5 Average z-height from drain plate in each bin
measured in meters.

While the Kinect v2 was able to obtain a good point
cloud before injection, it was unable to capture a full
point cloud of the test object after injection due to the
changes in optical properties caused by the injected
water. Therefore, volume increase calculations could not
be performed. In the industrial case, where the bacon is
travelling along a conveyor belt, it is expected that the
use of cameras will slow down the process, why an
alternative could be to utilize a laser scanner.
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6. Implementation of Actor-Critic Network Algo-
rithm
One of the issues with traditional supervised machine
learning is, that once training data is collected, the
model will no longer adapt to new inputs. This means,
that if the state space drifts over time, the training data
can become invalid.
One way to get around this issue, is to apply reinforce-
ment learning (RL). Here an agent acts in an environ-
ment and is given a reward based on its performance,
as displayed on Fig. 6.

Agent
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A
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R
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e

Fig. 6 Basic principle of reinforcement learning, where an
agent acts in an environment and receives rewards based on
its performance.

6.1 Inverted Pendulum Problem
Three different methods have been investigated; (i) Q-
Learning method, (ii) Deep Q Network (DQN) method,
and (iii) Deep Deterministic Policy Gradient (DDPG)
Actor-Critic Network (ACN) with a Deep Deterministic
Policy Gradient (DDPG).
The state and action spaces are both continuous, where
the state space consists of mass and volume of the
object, and the action space consists of the injection
pressure and -time. From the state and action space, the
Q-Learning method is disregarded, since this method is
known to have poor performance, when the numbers
of actions or states increases, based on the principle of
’curse of dimensionality’.
To determine which method of the two remaining
(DQN and ACN) have the best performance, these are
tested applying the inverted pendulum control problem.
For this problem, the pendulum environment have the
state space consisting of the normalized x- and y-
coordinates of the pendulum (coordinates defined as
[cos(φ), sin(φ)]) as well as the angular velocity of the
pendulum (φ̇). The action space is defined by a torque
applied at the pivot point of the pendulum in the range
of [−2, 2] Nm. The reward used as feedback to the
algorithm is defined in Eq. 3 [10].

r = −(φ2 + 0.1 φ̇2) (3)

The results of the two simulations can be found on
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Fig. 7 Result of the DQN method applied to the inverted
pendulum method.
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Fig. 8 Result of the ACN method applied to the inverted
pendulum method.

Fig. 7 and 8. From the results, it can be seen that the
ACN method outperforms the DQN method. Based on
the presented results, the ACN method is chosen.

6.2 Implementation the ACN Algorithm
Since the ACN method is based on the concept of
Neural Networks (NN), the number of hidden layers
and activation function is of great importance, these are
known as hyperparameters. A basic principle of a NN
can be found on Fig. 9, and the parameters used for the
NN in the algorithm can be found in Tab. II.

The ACN algorithm will be implemented on the
industrial case using the same structure as used for
the inverted pendulum problem, but with different
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Fig. 9 General setup of a Neural Network, consisting of
nodes (blue circles) connected through weights (lines between
circles) as well as an input layer with observations of the state
and an output layer estimating the value of each possible
actions.

Exploration Ornstein-Uhlenbeck

Activation Function ReLU

Actor
Number of layers 3
Nodes in layer 128
Activation function max(0,x)

Critic
Number of layers 3
Nodes in layer 256
Activation function max(0,x)

Tab. II Parameters applied to the NN for the actor and the
critic.

definitions of the state and action space, and reward
function. The reward function is shown in Eq. 4. It has
a target mass increase of 15 % as well as two terms
penalising actions the further away from 1.5 bar and
1 s they are.

r = −

(
(p− 15)2 + 0.1

(
a1 −

3

2

)2

+ 0.1(a2 − 1)2

)
(4)

The implemented Actor-Critic Model can be seen in Al-
gorithm 1. For simulation purposes, the environment the
agent traverses, has been modelled from experiments.
The environment is a four dimensional second order
polynomial function that returns the mass increase as a
function of injection pressure (x1), injection time (x2),
and starting mass (x3). The environment is obtained
through application of multivariate polynomial regres-
sion and can be found in Eq. 5.

f (x1, x2, x3) = c1x
2
1 + c2x

2
2 + c3x

2
3 + c4x1x2+

c5x1x3 + c6x2x3 + c7x1 + c8x2

+ c9x3 + c10 (5)

Algorithm 1: DDPG for Brine Injection [11].
1 Initialize critic Q(s, a|θQ) and actor µ(s|θµ) with

weights θQ and θµ

2 Initialize target critic Q′ and target actor µ′ with
weights θQ

′ ← θQ and θµ
′ ← θµ

3 Initialize replay buffer R
4 for episode = 1, M do
5 Get action ae = µ(s|θQ) +N
6 Execute action ae in environment, observe re

and se+1

7 Store transition (se, ae, re, se+1) in R
8 Sample N random transitions, (si, ai, ri, si+1),

from R
9 Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
10 Update the critic by minimizing the loss:

L =
1

N

N∑
i=1

(
yi −Q(si, ai|θQ)

)2
11 Update the actor policy using the sampled

policy gradient:

OJ ≈ 1

N

N∑
i=1

OQ(si, µ(si)|θQ)Oµ(si|θµ)

12 Update the target networks:

θQ
′
← τθQ + (1− τ) θQ

′

θµ
′
← τθµ + (1− τ) θµ

′

13 end

Since some solutions exist where a mass increase is non-
zero when the injection time is 0 s, the polynomial only
partly represent the actual environment.

Running the agent in the simulation environment, yields
the results seen in Fig. 10 with reward history on
Fig. 11 and mass increases on Fig. 12. A mass increase
with a mean of 14.94 % and standard deviation of
2.59 % was obtained, using starting masses drawn from
a normal distribution of N (80.5 g, 4.79 g). The agent
was run a second time using starting masses drawn
from a normal distribution of N (80.5 g, 20 g), showing
the same standard deviation and a mean of 14.64 g,
indicating that the variance in starting mass does not
have an impact on the agents ability to adapt a model
to the environment.
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Fig. 10 Simulation results for brine injection using the last
1000 episodes.
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Fig. 11 The reward for each episode.

7. Subsystem Integration in ROS
To allow all of the different subsystems in this project
to work together on a shared platform, the open source
framework called Robot Operating System (ROS), is
utilized. Through a number of ROS topics/services,
developed drivers communicate indirectly through an
interface handling all reinforcement learning, called
Environment and Reinforcement Learning Interface.
Tab. III displays the different topics and services.

8. Conclusion
One of the challenges in brine injection is large variety,
thus requiring an adaptive model to control. A Deep
Q-Network and an Actor-Critic Network were both
tested on the inverted pendulum environment, where the
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Fig. 12 Mass increase for each episode with a 95 %
confidence interval.

Driver ROS Topic/Service

Modbus Driver /modbus_client/write_coils
"/modbus_client/read_coils"

Scale Driver /serial/read_weight

Pressure Regulator Driver /pressure/measured

Volume Calculation Driver /volume/get_bacon_cloud

Tab. III Key ROS topics/services for different drivers.

Actor-Critic Network was found superior. The Actor-
Critic Network was capable of adapting a model to an
environment having continuous state and action space.

An experimental setup was developed using hardware
measuring states defined as mass and volume. Injection
pressure and injection time was furthermore possible
to control. Since it was not realistic to use bacon,
a compound of SAP, gelatine and water was used.
The compound was able to absorb water equal to a
28.9 % mass increase. The developed vision system was
capable of measuring initial volume of the test objects.
However, it was not possible to test the test objects for
uniform mass increase, as the vision system had issues
adequately detecting the test objects after injection due
to the resulting change in optical properties.

The Actor-Critic Model was capable of adapting
a model to a simulated environment with different
parameters. It produced a mean of 14.94 % mass
increase and standard deviation of 2.59 %. This result
was achieved with starting masses drawn from a normal
distributions of N (80.5 g, 4.79 g).

In combination, this means that an Actor-Critic Network
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was applied to the process control of brine injection in
the simulation environment, and a mass increase was
achieved. However, the distribution of the mass increase
was not measured.

9. Future Work
The first research object concerned the investigation
of whether a bacon imitation could be found. The
presented solution is only carried out with small test
objects. This was sufficient for the purpose of this
project, however, objects of the bacon imitation should
be developed to fit the size and shape of the actual bacon
one to one.

The second research objective concerned the experimen-
tal setup. For future work, it should be investigated
how a potential replacement for the KUKA LWR 4
robot could be designed. The application of a highly
sophisticated robot with 7 degrees of freedom as a
simple needle manipulator does not seem like a feasible
solution.

The third research objective concerned the development
of a vision system for volume determination. The first
improvement point is to find an ideal positioning and
angle, in order to obtain point cloud data without
missing sections. The performance of the volume
calculation needs to be verified on test objects both
before and after injection, and compared to the data
from the scale.

The fourth research objective concerned the implemen-
tation of an Actor-Critic Network. The simulation is
based on an environment created through experimental
work. Improving the model for this environment, espe-
cially in the low injection time area, will help increase
the accuracy of the model. A way to implement this
improvement of the environment would be to include
more experimental data in the model. This could also
potentially allow the usage of a polynomial of higher
order.
One point where the model for the environment suffered,
was due to high variance in the initial mass of the test
objects. This calls for a tuning of the parameters, where
e.g. other explorations methods could be tested.

Finally, the subsystem integration should be tested in
the real experimental setup in order to verify that the
ACN is able to adapt a model on physical test objects
as well.
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