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Abstract
In recent years, the need for better sorting techniques has made it necessary for new methods of polymer identification
and sorting to be developed. Laser-induced breakdown spectroscopy (LIBS) has received a lot of recognition for
its potential applications in polymer identification, since it allows for fast analysis without sample preparation. In
this study, LIBS, in combination with Principal Component Analysis (PCA) and k-means algorithms were used to
distinguish between seven different polymers in a non-controlled environment: polycaprolactone (PCL), thermoplastic
polyurethane (TPU), polycarbonate (PC), acrylonitrile styrene acrylate (ASA), polylactic acid (PLA), acrylonitrile
butadiene styrene (ABS), and glycol-modified polyethylene terephthalate (PETG). The Adjusted Rand Index (ARI)
and cluster variability (CV) were calculated and used in order to optimize the LIBS parameters delay time and laser
power. The interquartile range (IQR) rule was used to identify and remove outliers for a more effective and reliable
differentiation. Achieving a good repeatability of results was found to be challenging since this analysis heavily
relies on external parameters. Nonetheless, the results obtained show that LIBS is a promising technique for polymer
sorting.

Keywords: LIBS, Polymer Waste Sorting, Nanosecond Laser, Plasma, Atomic Spectra, Principal Component
Analysis, K-means Clustering Algorithm

1. Introduction
Every year, hundreds of millions of tonnes of poly-
mer waste are being produced, mostly from non-
biodegradable fossil hydrocarbons. These polymers can
only be eliminated by thermal techniques, such as
combustion or pyrolysis [1, 2].

Traditional waste management methods like these raise
pollution and cause health concerns. In order to
minimize these concerns, the polymers need to be sorted
and reprocessed [3]. For decades, the only option was to
sort the waste manually. With the rise of techniques such
as near infrared (NIR) spectroscopy, automatization
became possible. NIR spectroscopy has the advantage
of low associated costs and a high accuracy, but it is
unable to identify dark polymers.

Laser-induced breakdown spectroscopy (LIBS) is able
to solve these problems. With a measurement only
taking micro- to milliseconds, it is a suitable tool for

a rapid analysis of materials. Furthermore, it does not
require sample preparation. During LIBS, a pulsed laser
creates a plasma on the sample surface by ablating and
exciting a portion of the sample material [4, 5]. The
plasma is an ionized gas with atoms, ions, molecules
and free electrons that has no overall charge. A single
laser pulse can initiate a plasma. At first, high ionization
occurs, whereafter electron-ion recombination takes
place, forming atoms and eventually molecules. During
this process, a background continuum and spectral lines
are emitted. The continuum decays faster, allowing the
spectral lines to be analyzed. For this reason, a delay
time td between the initiation of the laser pulse and the
recording of the signal is set. The atoms and ions of an
optically thin plasma will emit line radiation, resulting
in a complex spectrum containing information about the
elemental composition of the ablated material. Like this,
it is possible to distinguish different materials [4, 6]. The
lifetime of the plasma depends on the laser parameters,
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the surrounding atmosphere and the sample, and ranges
from 0.5 µs to 10 µs [7].

Developing a reliable strategy for the discrimination
of polymers using LIBS is no simple task, as one
of the limitations of using LIBS in polymers is the
similarity between spectra. Furthermore, LIBS depends
on different complex interactions between the laser,
the sample and the environment [8]. Varying physical
properties of the sample matrix, such as the melting
point, or the density, can influence the spectral results.
This is called the physical matrix effect. The chemical
matrix effect describes the influence of inhomogeneities
in the chemical composition of the sample matrix [9].
The spectral results can be influenced by noise. The
main types of noise that have to be taken into account
are the detector noise, the source noise and the shot
noise. Source noise is composed of the influence of
the fluctuations in the laser-sample and laser-plasma
interactions, as well as the noise resulting from the
drift in the optical focusing and collecting system which
occurs at high temperatures. The shot noise depends
on the variation in the number of photons arriving at
the detector during a measurement [10]. As the plasma
interacts with the atmosphere, the atmospheric pressure
is an important parameter to take into consideration.
With decreasing pressure, the intensity of the obtained
spectra decreases as well, while the signal-to-noise ratio
increases [11].

Different statistical methods, such as artificial neural
networks or supported vector machines, are commonly
used to identify polymers from spectral data obtained
through LIBS. In this paper, principle component anal-
ysis (PCA), a tool for the reduction of dimensionality
of a data set in order to recognize patterns, and the k-
means clustering algorithm, were used to evaluate the
obtained spectra [4, 12].

2. Methodology
2.1 Experimental
2.1.1 Sample preparation
The polymers investigated in this paper were polycapro-
lactone (PCL), thermoplastic polyurethane (TPU), poly-
carbonate (PC), acrylonitrile styrene acrylate (ASA),
polylactic acid (PLA), acrylonitrile butadiene styrene
(ABS), and glycol-modified polyethylene terephthalate
(PETG). Their structural formulas can be seen in Table
I. A part of the samples was chemically produced, while
the rest was 3D printed and provided by the department
of Materials and Production of Aalborg University.

For the production of the PCL samples, raw material in
form of a powder was used. It was heated on a metal
plate that was functioning as a mold. This mold was
heated up on a heating plate at 100°C, so that it could
be guaranteed that the PCL was heated up to its melting
point of 60°C. The PC samples were produced through
evaporation. A dissolution of PC in dichloromethane
(DCM) of approximately 15% was prepared. It was then
poured into a mold of a suitable diameter, such that the
sample was ensured to fit on the sample stage. The DCM
evaporated over time, resulting in samples of pure solid
PC. The PLA, PETG, TPU, ASA and ABS samples
were produced with a 3D printer.

2.1.2 Experimental set-up
A 5 ns pulsed Nd:YAG laser (Continuum Surelite II-10)
operating at a repetition rate of 10 Hz and a wavelength
of 1064 nm was used to create the LIBS plasma. The
emitted plasma light was then collected and measured
using a AvaSpec2048CL-RS-EVO spectrometer with a
diffraction grating covering the range between 300 nm
and 815 nm.

A schematic representation of the experimental set up
can be seen in Figure 1. An RG850 light filter in front of
the shutter was used to remove wavelengths below 850
nm. A dielectric mirror directed the beam to the sample
stage. To focus the beam onto the sample, a DCX 200
mm lens was employed. A fused silica 50 mm focal lens
was then placed to focus the light emitted by the plasma
onto an optical fiber. A KG3 filter was placed to filter
out the infrared light, preventing damages to the optical
fiber, which transmitted the light to the spectrometer.
In order to achieve a more homogeneous ablation, the
sample stage was rotated using a connected motor. To
be able to set a delay time between laser pulses and
signal collection, the laser output trigger signal had to
be inverted before reaching the spectrometer.

Fig. 1 Scheme of the experimental set up.
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Tab. I Polymers used in this work and their respective chemical structures.

Acronym Name Structure

ABS
Acrylonitrile

-butadiene-styrene
copolymer

ASA Acrylonitrile
styrene acrylate

PC Polycarbonate

PCL Polycaprolactone

PETG Polyethylene
terephthalate glycol

PLA Polylactic acid

TPU Thermoplastic
polyurethane

2.2 Data analysis
The raw spectra need to be processed so that the relevant
chemical information needed to identify each polymer
can be extracted. For that, the data was imported to
MATLAB, where this information was obtained in the
form of spectral descriptors. These represent properties
of specific regions of each spectrum, such as peak
intensities or areas, selected in regions that differ from
polymer to polymer. In this study, the chosen regions
were the ones comprising the cyanide (-CN), hydrogen
(H) and oxygen (O) peaks, as seen in Table II.

Tab. II Emission signals and corresponding wavelength
ranges for the chosen set of spectral descriptors.

Emission signal Wavelength range (nm)
CN violet band 380 - 390
H (I) 650 - 660
O (I) 775 - 780

Inspired by previous work on polymer differentiation
[4], three descriptors were chosen for each peak: the
area under the curve with baseline subtraction, its
maximum intensity subtracting the baseline and its
maximum intensity without baseline subtraction. These
can be seen represented in Figure 2. As these descriptors
were calculated for the three peaks, a total of nine
descriptors were used.

Before analysing them, the raw spectra were pre-
processed by background removal. A reference dark
spectrum taken for each set of measurements was
subtracted from the virgin polymer spectra. This dark
spectrum contained the data obtained previous to the
plasma formation. Next, the descriptors information was
extracted, indexed in matrix form and standardized.
Standardization of descriptors was carried out by setting
the mean for each measurement to zero and the standard
deviation to one.
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Fig. 2 Types of spectral descriptors used in this study.
Maximum intensity with baseline subtraction (left), maximum
intensity without baseline subtraction (middle), and area
under the curve with baseline subtraction (right). These are
calculated for the CN, H (I) and O (I) peaks for a total of 9
descriptors.

The standardized matrix was then used as an argument
for the k-means clustering function, which placed the
different values into k different clusters. However, these
clusters were nine dimensional, accounting for the
nine descriptors. For that reason, multivariate analysis
- principal component analysis (PCA) - was carried
out using a predefined MATLAB algorithm. In that
way, dimensionality was reduced from nine to two
dimensions.

These k-means/PCA results, however, can contain
values considered extreme and too different from all
other data. These values, outliers, were removed by the
interquartile range (IQR) method. Points either below
the lower limit of the 25th percentile of the data or above
the upper limit of the 75th percentile were discarded in
this last step.

3. Results
3.1 Optimization of LIBS parameters
In order to optimise the setup parameters for the LIBS
analysis, several evaluation tools were needed. The
cluster purity and the variability within each cluster
were the parameters chosen to quantify the quality of
the obtained results for four of the polymers (PCL, PC,
PLA, TPU). For this analysis, five measurements of each
polymer sample were taken.

To measure cluster purity, the Adjusted Rand Index
(ARI) was used. The ARI was calculated from a
contingency table, similar to Table III, where U =
{u1, u2, . . . , uR} refers to the different clusters and V =
{v1, v2, . . . , vC} refers to the different polymers (e.g:
v1=PLA). nij represents the number of measurements
allocated in cluster j being polymer i.

Tab. III Contingency table notation.

v1 v2 . . . vC Sums
u1 n11 n12 . . . n1C n1.

u2 n21 n22 . . . n2C n2.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
uR nR1 nR2 . . . nRC nR.

Sums n.1 n.2 . . . n.C n.. = n

With the contingency table, it was possible to apply
the adjusted Rand Index mathematical expression,
expressed in Equation (1), where
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The Adjusted Rand index value lies between 0 and 1.
Its value will be 1 when all measurements for samples
of the same polymer are allocated in the same cluster.
However, it will be very low, close to 0, if the data is
randomly distributed and has no clustering tendency.

The other method used to evaluate the quality of the
results was the variability within each cluster. This value
is calculated, for each cluster, as the mean of the point
to centroid euclidean distance. The value considered for
the optimisation, cluster variability (CV), is the sum of
this mean for every cluster.

3.1.1 Laser Power
The laser power is one of the controllable settings in the
setup, having a significant impact on the formed plasma.
With the laser being the most expensive component of
the setup, being able to use lower laser powers, would be
beneficial as a more compact and affordable laser could
be used. Nonetheless, it is necessary that the plasma
created has good enough characteristics for a reliable
analysis.

In order to analyze the relation between laser energy
and the quality of the obtained spectra, a sweep of
laser powers, from 65 mW to 610 mW was made.
These values of average laser power translate into a
range of laser energies per pulse from 6.5 mJ to 61
mJ. The power of the laser is directly related to the
intensity of the spectra. Generally, higher power leads
to higher intensity as shown in Figure 3, but also higher
continuous background signal.
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Fig. 3 Relation between intensity and laser power, in
miliwatts, for 4 different polymers. The general tendency is
for higher laser powers to lead to higher signal intensities.

Since the goal is to have the largest signal-to-noise
ratio possible, it is necessary to compromise on lower
intensities. A quality test was preformed to find which
value of laser power would achieve the best results.

Using the ARI and the CV implemented in the
MATLAB code, the effect of the laser pulse energies
on the clustering can be studied so the best laser power
is selected. The results obtained from such analysis are
shown in Table IV. With these results, it is possible
to see that the best energy to use is 13mJ per pulse,
corresponding to 130 mW of average laser power,
since it showed the best possible differentiation, which
translates to an ARI value equal to one and the the
lowest value for CV comparing to other powers with an
ARI of one.
Tab. IV ARI and CV obtained for different laser powers.

Laser Power (mW) Energypulse (mJ) ARI CV
65 6.5 0.583 3.749

130 13 1 0.777
265 26.5 1 1.096
370 37 0.768 1.307
469 46 1 1.660
550 55 0.545 2.277
610 61 0.586 3.036

3.1.2 Delay Time
The dependence of the obtained spectra on the delay
time is considerable, as illustrated in Figure 4. Larger
delay times lead to a decrease in the continuous part of
the spectrum as well as in the total intensity, leading to
the loss of some minor peaks. A small delay time leads
to the presence of undesirable continuous background
signal, which affects individual peak intensities. That

being said, it is necessary to optimise the value for the
delay time so that a compromise can be achieved.

Fig. 4 Influence of delay time in the obtained spectra. As
delay time is increased, the continuous part of the spectrum
decreases. However, the total intensity decreases as well.

In order to find the best delay time for this setup,
different delay times were tested. The laser power
for this experiment was set to 130 mW since it was
previously found to deliver the best results. The delay
times tested were 0, 0.250, 0.500, 0.750, 1, 1.5, 2, 2.5,
and 3 µs.

The quality of the results was evaluated with the same
tools used for the laser power, ARI and CV, and the
results are shown in Table V. The ideal results for this
test would be to achieve an ARI value equal to one and
the lowest CV possible, similar to what was done with
the laser power.

Tab. V ARI and CV obtained for different delay times.

Time Delay (µs) ARI CV
0 1 0.838

0.25 0.845 0.706
0.5 1 0.851

0.75 0.820 1.067
1 1 0.777

1.5 0.835 1.094
2 1 1.392

2.5 1 1.528
3 0.587 1.307

From Table V it can be found that an ARI equal to one
can be achieved for different delay times and that the
biggest differences are related to the value for CV.
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It is clear that CV has an increasing tendency when the
the delay time gets larger, as demonstrated in Figure
5. From 1.5 µs to 3 µs, all the respective CV values
are above one, whereas for lower values of delay time
it is seen that CV is around 0.80. From this, it can be
assumed that the optimal delay time is below 1.5 µs.
Considering only the values below 1.5 µs, for which
the ARI value is one, it is observed that 1 µs is the
delay time with the lowest CV value. Therefore, it is
chosen as the optimal delay time.

Fig. 5 Relation between CV and delay time. An increasing
tendency of larger CV values for higher delay times can be
observed.

4. Identification of polymers
As a first approach, the intensity ratios of the char-
acteristic hydrogen and oxygen peaks in the spectra
were evaluated. It showed that the repeatability was low
and the influence of the environmental conditions and
additives in the polymer samples was big. Therefore,
additional descriptors needed to be added to evaluate the
measured spectra. PCA and k-means algorithms were
employed to identify the polymers instead.

Three new polymers were added to the batch of samples
- ABS, ASA and PETG - in order to verify if the correct
differentiation of a larger number of polymers, seven,
was achievable. Using the optimised settings, the result
present in Figure 6 was obtained.

The obtained PCA plot accounts for around 99% of
the total data variance and has an ARI of one, i.e.,
each cluster has only one type of polymer present,
so a successful differentiation of the seven polymers
was achieved. PLA samples with nine different colors
were also added to verify that the dyes that are
added to achieve different colors would not have a

strong influence on the clustering. All PLA samples
are contained in the same cluster, indicating that the
methodology applied is not strongly influenced by the
sample colors. Although some variability is observed, it
cannot be said with certainty that this is caused by the
colors as the same amount of variability is present in
other clusters. It is also clearly seen that some polymers
measured have a higher variability than others This can
become a problem when a higher number of polymers
is analyzed, as the clustering of different polymers onto
the same cluster would more easily happen, reducing the
effectiveness of the method. The existence of outliers is
also of great importance, as these will affect the results
obtained significantly.

Fig. 6 PCA plot of the seven polymers: PCL, PC, TPU, PLA,
PETG, ABS, ASA. A successful differentiation was achieved.

4.1 Outlier Removal
All results so far have been presented after the outlier
removal process. To have a visual perception and
understanding of why this step is important, Figure
7 represents the same data set utilized as for Figure
6 but without the outlier removal process. Comparing
both results, the difference is clearly noticeable. The
cluster process resulted in a different arrangement of
the points, as points from the previous Clusters 3, 4
and 5 are now mixed. Circled in Figure 7 are the
correct clusters for such points and represented as red
triangles are the measurements identified as outliers.
Of these four outliers, two of them seem to have a
higher impact than the others, the one detected in
Cluster 3 and the one from Cluster 4. Because of
these two, the centroids calculated by the k-means are
dislocated, influencing the clustering of all the other
"non-outlier" measurements. In this example, because

6



of the outliers, three out of seven clusters are wrongly
clustered. The outlier detection and consequent removal
is of major importance for the high effectiveness of the
differentiation mechanism.

Fig. 7 PCA plot of seven different polymers without the
outliers removed. Clusters 3,4 and 5 are a mix of polymers
(TPU, PLA, PETG). The identified outliers are marked with
red triangles.

For the outlier removal, the MATLAB code goes trough
each cluster and uses the IQR rule for every descriptor
in order to identify outliers. If any data point has at least
one descriptor detected as an outlier, the measurement
is removed. Figure 8 illustrates a boxplot, a visual way
to display the IQR rule, for the PLA samples, using
the Oxygen raw peak intensity descriptor. The blue
box contains the middle quartiles and from the box
edge to the upper or lower limit the upper and lower
quartile are contained respectively. Any point outside the
limited zone is considered an outlier. In this example,
the point outside is the PLA outlier mentioned above.
Even though only one boxplot is represented, when
looking trough the boxplots for the other descriptors this
measurement was identified as an outlier more times.

Fig. 8 Boxplot of the oxygen raw peak for PLA measure-
ments. Inside the blue box are the middle quartiles and from
the edge of the box until the upper or lower limit are the
accepted points of the upper and lower quartiles respectively.
Any point outside these limits are considered outliers. In this
boxplot, one point is identified as such.

4.2 Repeatability
Figure 9 presents three different k-means/PCA analysis
carried out with the same set of samples (PC, PC, PLA
and TPU) in three different measuring sessions. In the
bottom plot, a perfect clustering - ARI of one - can be
seen, where PCL is Cluster 1, PC is Cluster 2, TPU is
Cluster 3 and PLA is Cluster 4. In the middle one, the
clustering was not perfect as one TPU measurement is
wrongly clustered with the PLA ones. In the top plot,
two PLA measurements are wrongly clustered with the
TPU ones. Although not all measurements are sorted
into the correct cluster, the clustering is still acceptable,
proving the method to be promising.

One of the main issues faced during this study was
the non-uniformity of results for different measuring
sessions. While the distinction of different polymers
was achieved when using measurements taken during
the same session, when adding measurements from
another session, these will not cluster correctly. The
same sample, if measured in different times, has a
different fingerprint, which makes the construction of
a database for future differentiation challenging with
the setup used in this study. Figure 9 illustrates the
behaviour previously explained. Although the different
PCA plots look very similar, a closer inspection of the
Y-axis makes clear that the clusters are varying their
coordinates from session to session.

The non-controlled environment may be one of the
causes for this behavior, since the surrounding envi-
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ronmental conditions, such as atmospheric pressure,
change from session to session. Other factors that may
be responsible for such deviations are the sensibility
of the used spectrometer to misalignment, reflections
due to the position of the sample on the sample stage,
polymer decomposition and transparency of some sam-
ples, which allowed the laser light to be scattered and
transmitted through them. This last factor is believed
to cause the appearance of an aluminium peak in the
spectral results, since it was what the sample stage is
made of.

Fig. 9 PCA plots of PCL, PC, TPU and PLA samples from
different measuring sessions. It can be observed that cluster
positions change for each session.

5. Conclusions
In this paper, it has been proven for LIBS to be a
reliable method for the differentiation and classification
of polymers when coupled with multivariate analysis
techniques. Firstly, the LIBS setup was optimized as
to reach a compromise between spectra intensity and
signal to background ratio. This analysis was carried out
for both laser power and the delay time between each
laser pulse and signal detection, employing Adjusted
Rand Index (ARI) as a measure of cluster purity and
calculating cluster variability (CV). Regarding laser
power, 130 mW or an energy per pulse value of 13
mJ showed the best results. For delay time, the best
results for these polymer sample set were obtained
for 1 µs. Then, k-means and principal component
analysis (PCA) were used to differentiate 7 polymers,
which was possible when coupled with the removal of
outliers. This last step improved the accuracy of the 7
polymers differentiation to 100%. In addition, with the
methodology used, the influence of color additives in
the differentiation process was successfully surpassed.

However, repeatability was limited, as cluster positions
change for different measuring sessions. This drawback
might be caused by changing experimental conditions,
such as small misalignments in the focusing of plasma
light on the optical fiber or changes in atmospheric
conditions.

For future work in polymer differentiation, a diffraction
grating enabling a wavelength range that comprises the
emission signal range for carbon - around 247 nm - and
other common elements found in polymers, could be
helpful in improving the multivariate analysis ability to
distinguish more polymer types.
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