
THE 10th STUDENT SYMPOSIUM ON MECHANICAL AND MANUFACTURING ENGINEERING 

Learning Robot Skill Sequences with Reinforcement Learning for

Off-Earth Assembly

Philip L. Møller, Valdas Druskinis, Frederik J. Christensen, Matej L. Debijadi

Department of Materials and Production, Aalborg University
Fibigerstraede 16, DK-9220 Aalborg East, Denmark

Email: pmalle18@student.aau.dk, vdrusk18@student.aau.dk, fjch18@student.aau.dk,
mdebij21@student.aau.dk

Web page: http://www.mechman.mp.aau.dk/

Abstract
To enable Off-Earth manufacturing, such as on Mars or the moon, there is a great need for robots that can perform
agile tasks as manual corrections and reprogramming may not be possible due to e.g. communication issues. This
paper explores the possibilities for applying reinforcement learning (RL) to automate the reprogramming of robot
skills, by replacing the common reliance on precedence charts with real-time collision detection of simulated robot
trajectories. To prove the relevance for In-Space-Assembly (ISA), a power inverter is assembled, as stable generation
and distribution of power is a predecessor to most other technologies relevant for colonization. The environment
used for training an RL agent is simulated through Nvidia Isaac Gym. Experiments on trained agents are showing
clear signs of learning, however, they are found to occasionally struggle with the planning of tool change. Assembly
sequences from a trained agent are demonstrated and validated with a physical 7 DoF Panda robot manipulator
developed by Franka Emika. This work proposes a standardized assembly board based on the power inverter while
also incorporating realistic manufacturing processes.

Keywords: Robot skills, assembly sequence planning, reinforcement learning, automated reprogramming

1. Introduction
Traditional space operations have been focused around
utilizing technologies and products that require little
to no assembly after deployment, e.g., satellites are
provided with a power source through unfolding solar
panels. However, through recent years there has been
an increased focus on developing technologies that
allow for In-Space-Assembly (ISA) due to the increased
flexibility of operations it provides. Xue et al.[1]
outlines that the complexity of these technologies are
proportional to the complexity of the required assembly,
and therefore, technologies can be classified based
on intended assembly products. Four classes, with
increasing complexity, are suggested as: mating between
elements, modular assembly, complex assembly and
assembly from parts.

Any colonization on other planetary bodies, such as
Mars or the Moon, will rely heavily on establishing
In-Situ Resource Utilization (ISRU) to become self-
sufficient, which has a high level of synergy with
assembly-from-parts. Autonomous robotic systems are
therefore highly relevant as this type of assembly will

require complex and flexible technology.[2]

Optimization is generally central for all manufacturing
processes, however, the problem of finding an optimal
assembly sequence is an NP-hard (non-deterministic
polynomial-time hard) problem, as the solution space
grows with the factorial of the number of components
in the assembly. This can lead to extensive computation
time for an exhaustive search for the single optimal
solution. By utilizing RL, an agent can be used to reduce
this search time by building up experience through trial
and error. [3]

2. Related Work
Previously, the problem of assembly sequence planning
has been solved by systems based on some human
input[4]. This human input comes in the form of
information about precedence relations between objects
or their constraints during the assembly[5]. Throughout
the years, multiple methods (De Fazio and Whitney[6];
Sunil et al.[7]; Xu et al.[8]) have been developed to find
optimal solutions based on this precedence information,
however, the effectiveness of such systems would be
significantly reduced for space related operations due

1

mailto:correspondingauthor@student.aau.dk
mailto:correspondingauthor@student.aau.dk
http://www.mechman.mp.aau.dk/


to e.g., communication issues preventing human input
from reaching the system.

Research on automated robot skill sequence planning
for assembly has also been conducted, where Rodríguez
et al.[9] was able to automatically generate assem-
bly sequences by providing product specifications to
the system. This removed the necessity of precedence
charts, however, the product specifications would still
have to be input manually. Most recently, De Winter
et al.[3] developed a system which did not require
any human input related to precedence information or
products, but instead required programming of the robot
skills by demonstration to assemble a Cranfield bench-
mark. Precedence information to establish feasibility of
individual assembly skills was here asserted through
physics simulations.

One thing common to the works presented throughout
this section is that they have been restricted in two
ways. In autonomy, by reliance on precedence charts
or programming-by-demonstration, or in generalization
to realistic products, i.e., single process assemblies such
as the Cranfield benchmark rarely occur in the industry.
This work is aimed towards applying RL to a realistic
assembly product, featuring more than one process,
and allowing for fully autonomous sequence planning
through real-time collision detection of manipulator
trajectories.

In the following sections, we present the different
components required for an overall solution. Section 3
will outline the background for this work, along with
defining a relevant product featuring realistic processes,
while Section 4 will outline the experimental setup
related to these components. This will be followed
by a presentation of results from experiments related
to feasibility and optimality in Section 5 to which a
conclusion will be given in Section 6. Some proposals
for future work will then finally be outlined in Section
7.

3. Background
This section will outline the background for this
work, which involves defining a relevant assembly
product featuring realistic processes and the general RL
framework, while alternatives to precedence charts will
be discussed in the end.

3.1 Assembly Product
Various products are relevant to colonization of other
planetary bodies, however, power generation and in-

frastructure is a general predecessor to most other
necessary technologies. To safely permit both generation
and distribution of power, inverters are needed to invert
produced DC power into usable AC power, and are
thus crucial components. Inverters also feature general
assembly processes that apply to a wide variety of
common products. Therefore, a simplified inverter, as
seen in Figure 1, will be used as a standardized assembly
board, which consists of eight components: a PCB,
two MOSFET switches with heat sinks, a clock pulse
generator, a transformer and a brace, requiring two
fastenings with screws, to fix the transformer.

Fig. 1 Simplified inverter assembly.

The proposed standardized assembly board can also
serve as a benchmark for related works, as it is
paramount to have a common basis to reasonably
compare performance of RL algorithms.

3.2 Reinforcement Learning
Reinforcement Learning (RL) is a machine learning
technique that revolves around allowing models to learn
through trial and error. Through this learning process, an
agent is trained to select actions that yields the greatest
reward given an observed state of a given environment.
The way rewards are determined for given actions can
be used to encourage various behaviors of the agent.
RL problems are mathematically formalized as Markov
Decision Processes, defined by a tuple of the following
elements (S, A, T, γ, R)[3], where:

• S is a set of all states
• A is a set of all possible actions, in this project

actions will be referred to as skills

2



• T is a probability transition function from current
state to next state when performing the action

• γ discount factor γ ∈ [0, 1], measure of importance
of future rewards

• R is a reward function

Probabilities completely characterize the dynamics of
the environment in a Markov decision process. That is,
the probability of any potential state and reward at any
given time is solely determined by the state and action
that came before it.

Various algorithms can be used to solve MDP’s, where
one of the most common is Q learning. In the Q
learning algorithm, a lookup table called a Q-table is
formed, which stores information of all of the State-
Action values and maps them to a quality value, or Q-
value, which is determined as the maximum expected
future rewards for actions in a given state. All Q-
values are initially set to 0 and as the agent explores
the environment, the Q-values in the table will be
continuously updated, with more iterations providing
better approximations. In the complex environment
where the number of states and action is high the Q
function, approximated with the neural networks, is used
to map state and action pairs to Q-values.[10]

3.3 Robot Skill Portfolio
To allow for the RL agent to perform general actions
related to assembly, they can be defined as robot skills
following the standard robot skill model as outlined by
Bøgh et al.[11], visualized in Figure 2.

Fig. 2 Visualization of a general robot skill model. Param-
eters defining the skill along with the current state of an
environment is used to evaluate whether an action is feasible
through e.g., pre- and postconditions, which ensures that skills
are successfully executed.[11]

The assembly of the proposed power inverter features
four processes: pick, place, mechanical fastening, and
soldering. Soldering is difficult to combine with the
other processes within the same work cell, therefore,

the assembly of the inverter will not include the final
soldering of components to the PCB board. Thus, a
portfolio of the skills necessary to perform the assembly
can be summarized as in Table I.

Tab. I Robot skill portfolio.

Skill Description
Pick Pick X up
Place Place X at Y
Load Attach X to manipulator
Offload Return X to holder
Fasten Fasten component X and Y at hole Z

As defined by Figure 2, to verify the feasibility of
a skill, the execution of each skill is governed by
a set of pre- and postconditions while the execution
itself is continuously evaluated through predictions. Pre-
and postconditions are evaluated with a set of input
parameters, i.e. the desired skill, and the environment
state. If a skill fails to comply with any of these, it will
not be considered feasible in that state.

Preconditions includes verifying compliance with the
current environment for a desired action, e.g. the
correct tool is attached or an object to be picked
has not already been placed. After having asserted
compliance with the environment, the skill can safely be
executed. As the overall goal is to output an assembly
sequence, the skills must carried out in a feasible
sequence, i.e., no collisions are allowed throughout
their execution. Assuming no collisions are present
throughout execution, postcondition will then be applied
to verify that the skill resulted in the expected outcome,
i.e., after a tool change the desired tool is attached or
after fastening a certain torque was achieved.

3.4 Simulation of Collisions
The execution of a skill in traditional sequence planning
methods is ensured to be feasible through a hand-made
precedence chart, however, to make a fully autonomous
assembly sequence planner these potential collisions
must be detected through simulations. Assembly itself
is, however, inherently based on performing controlled
collisions of components, and therefore, a robust
system must be defined to distinguish between desired
collisions, e.g. contact when placing a component, and
undesired, actual, collisions.

Physical collision detection often involves analysis of
forces that are being applied to the objects or the robot,
which can be simulated in a physics-driven simulated
environment, where assets are commonly defined as
rigid bodies. The simulation environment should be

3



configured to accurately detect collision and rigid body
dynamics, as it should replicate the real world behavior
of the robot and the environment to a degree that is
useful.

However, a highly realistic environment would lead to
a long computation time, which is not desirable in
a context of reinforcement learning. To mitigate the
trade-off between the computational complexity and
the accuracy of the simulation, the rigid body objects
are represented as meshed objects. The computational
complexity can therefore be reduced by simulating only
one rigid body at a time.

This trade-off also largely affects the collision detection
between the objects, as for example two flat objects
can not be stacked on top of each other, as the contact
points will move to different locations and make the
objects shake or sometimes even explode away from
each other due to surface penetration. A workaround
to avoid surface penetration in the simulation, is by
dropping the objects relatively close to the assembly
point. [3]

4. Experimental Setup
The architecture of the system can be seen summarized
in Figure 3. A DQN agent is trained to output an
action, which is interpreted by the trajectory planner as
a sequence of via points and end-effector manipulations
based on which skill is indicated. Throughout this trajec-
tory, the forces applied to the assembly components is
tracked in real-time and fed into a collision detection
algorithm. If a collision is detected, a flag is raised
within the simulated environment which will affect the
reward signal returned to the DQN agent and cause the
environment to reset to an initial state. If no collisions
are detected, a new state is computed and another
iteration is carried out.

Fig. 3 Summary of system architecture.

The trajectory planner is running within the simulated
environment such that defined pre- and postconditions
for the skills can be evaluated. For a more robust
system, these should be checked through sensors in
the environment, as specifically postconditions will
rely on external observations; However, this has not
been a focus for this work. The project repository
can be accessed via this hyperlink:https://github.com/
P8-RL-Project/main-rl.

4.1 Physics Simulation Environment
The simulated environment is defined through Isaac
Gym[12], where its physics engine is used to enable
collision detection throughout the execution of a skill.
Isaac Gym supports non-parallel, multi-environment
training which can be used to increase training efficiency
and convergence rates. To enable physics simulation
of assets, a digital representation of a Panda manipu-
lator is used while geometrically simplified assembly
components have been developed. An overview of the
simulated environment can be seen in Figure 4.

The observable state of the environment is presented
to the agent as a sequence of 17 bits, where each bit
is related to either pre- or postconditions of individual
skills or the current state of the robot. This can be seen
summarized in Figure 5.

4

https://github.com/P8-RL-Project/main-rl
https://github.com/P8-RL-Project/main-rl


Fig. 4 A visualization of the component setup (a) along with its representation in the Isaac Gym simulation (b).

Fig. 5 Observable state space, here indicating the initial state
configuration.

From Figure 5, it can be seen that a bit is added for
all required skills for each component, while the robot
state is defined by the current tool attached, 0 for gripper
and 1 for fastener, the tool state, 0 for ready and 1 for
engaged, along with a final bit to indicate whether the
previous action is a tool change or not, which is included
to avoid issues with the DQN agent exploiting repetitive
tool changing.

4.2 Reinforcement Learning Agent
A DQN agent is defined through the SKRL library[13],
which provides direct interfacing with Isaac Gym
through environment through wrappers. The agent is
configured with a discrete action space consisting of
a total of 16 actions based on the skill portfolio, i.e.,
an action for each pick and place skill of the six

components, an action for each fastening skill and
an action for each tool change. These can be seen
summarized in Figure 6. Given that the fastenings can
be carried out in the end, the optimal sequence will
never include more than one tool change and therefore
the ability to change to the gripper becomes superfluous,
however, there is nothing strictly limiting the agent from
carrying out the fastenings early on and then returning
to picking and placing.

As described above, each action is interpreted as a
sequence of via points by a trajectory planner. These via
points are fixed and determined by the positions of the
components in the environment, and therefore, any new
action will have the goal pose of the previous action as
start pose. This allows for some opportunistic behaviour
of the agent, where it can take advantage of being closer
to e.g. the tool changing point at some poses.

The behavior of the agent is driven by a dense reward
signal designed to incentivize three overall behaviours:

1) Avoiding collisions
2) Completing the assembly sequence
3) Minimizing the sequence distance

To encourage avoidance of collisions and completion of
sequences, respectively a fixed penalty or a fixed reward
is provided when encountered. Successful actions in
between these two cases should be optimal, and
therefore, their reward is scaled based on the 2D
Cartesian distance from a given action’s starting pose
and goal pose. As the distance should be minimized,
the actual distance is scaled by a negative factor.

Experiments with a reward signals based exclusively on
this configuration showed that the agent would exploit

5



Fig. 6 The action space for the RL agent is defined as a discrete space with an action for each required process for the standardized
assembly board. E.g., calling the action 1 will thus execute the trajectories necessary to place the PCB.

the distance reward of doing repetitive tool changing, as
these happen at the same pose thus yielding an action
distance of 0. To avoid this issues, a penalty is included
for repetitive tool changing, and as mentioned in the
definition of the observable state, a bit is included to
allow the agent to observe whenever it had done a
tool change. Furthermore, excessively long sequences
would also occasionally be generated, and therefore, the
sequence window of the agent is fixed to be a maximum
of 20 skills, after which it is considered as out-of-time
and a penalty applied. This scheme is summarized in
Table II

Tab. II Reward signal scheme.

Collision -10
Complete sequence +10
Successful action -0.1dA
Out-of-time -10
Repeat tool change -2.5

Through this overall configuration, it is seen that
the agents could generate both feasible and optimal
solutions, however, the agents would encounter a
"critical point", after having carried out all of the pick
and place skills and would have to incorporate the tool
change, where the agents occasionally would become
stuck in a local minima.

4.3 Collision Detection
The Isaac Gym framework allowed collisions to be
detected by defining a net contact force tensor for each
asset which is composed by a force vector for each rigid
body in that asset. Assets for the simplified inverter are
defined as individual rigid bodies, and are thus given
by a 3 dimensional vector defining the applied forces
on the X-, Y-, or Z-axis, which is updated each time
step. Collisions could thus be detected by applying a
threshold to the force vector.

Through experiments within the Isaac Gym environ-
ment, where desirable assembly related collisions and
undesirable collisions are compared, it is seen that the
desirable collisions only had forces applied for single

simulation time steps, while actual collisions is consis-
tent over multiple simulation time steps. Therefore, to
filter away assembly related collisions, a mean of the
absolute net force over a time span of the last 6 frames
is computed and thresholded.

An alternative option for collision detection is to
measure the applied force of the gripper fingers;
However, it is found that with this method it is more
challenging to threshold collisions as each rigid body
had unique mass properties thus requiring the gripper
fingers to apply more force on certain rigid bodies.

The specific threshold is determined through trial and
error, again through experiments with desirable and
undesirable collisions, after which it is found that
a threshold value of 1 is appropriate to consistently
distinguish between the two.

4.4 Robot Trajectory Planner
To move the robot accurately in the simulation envi-
ronment, a trajectory planner is developed. Initially, an
inverse-kinematics controller is applied, however, it is
found that this controller only accounted for the joint
positions and thus disregarding dynamics, causing it to
fail in accurately reaching goal poses.

Isaac Gym also supports Operation Space Control
(OSC), which allows accurate control by incorporating
dynamics. This controller utilizes various gains
to achieve stability and takes 6 arguments as an
input, namely the Cartesian position and Quaternion
orientation of a goal position, the DoF position state
of the robot, the mass matrix, Jacobian matrix for
the end-effector forces, joint velocity of the robot
and the velocity of the gripper. The methods and
equations used for OSC are described by Peters et
al. in [14]. This controller helped to overcome issues
caused by the previously used inverse-kinematics
controller and improved the overall trajectory planning
which is resulting in more accurate robot manipulator
movements.

6



5. Experiments and Results
The RL algorithm discussed in the previous section is
trained over ten sessions for 20000 steps, after which
the best performing model from each training session is
evaluated to determine its optimality, while the training
itself is evaluated to establish whether the agents are
learning to act as intended. Therefore, two parameters
are monitored throughout the training of each model:
the ratio between feasible and infeasible sequences, to
verify that the agent progressively learned to put feasible
sequences together, and the total distance for feasible
sequences throughout the training, to verify that the
agent converged towards an optimal sequence.

The implementation used for testing performance of the
agent is delimited to use a precedence chart for detection
of collisions due to integration issues with the collision
detection substitute at the time of testing.

5.1 Output Sequence Feasibility
The ratio between feasible and infeasible sequences
are measured by writing to a log file each time an
environment is either reset, marking those sequences
that had collisions or failed pre- or postconditions, or
had raised the done flag, marking those that succeeded.
A 0 is appended to the log for each failed sequence,
while a 1 is appended for each successful sequence. A
summary of all tests are visualized in Figure 7.

Fig. 7 A smoothed mean success rate per episode. Grey
shadowed area indicates a standard deviation of the success
rate.

The data in Figure 7 is smoothed through a moving
average filter, based on the outcome of the prior
100 sequences, for easier inspection. From this test

it is seen that the agents learn to generate complete
sequences after approximately 6000 steps and tends
to converge towards approximately 40% success rate,
however, throughout the training, larger periods are seen
where the agents seems to diverge from its current path
to explore other sequences which results in successively
failed attempts until it corrects it self. The ability to
output feasible assembly sequences can potentially be
increased by allowing the agents to train for longer
periods, as one of the agent only achieves this in the
very of its training session. However, once a certain
length of assembly sequences is achieved, there is a very
larger number of actions available to choose from when
exploring, while only very few of them are actually
feasible. Therefore, the better the agent becomes at
producing assembly sequences, the more risky it is for
it to extend it or explore new ways of putting actions
together, and thus, most exploration results in a failed
sequence. Adjustments may therefore be difficult to
make without sacrificing a degree of exploration, which
makes the agent more prone to becoming stuck in local
minimas around the critical point.

5.2 Minimum Distance Convergence
Here the length of a sequence is again appended to a
log file each time the done flag is raised. The results
for each training sessions is visualized in Figure 8,
again, smoothed with a moving average of the prior 100
distances for easier inspection.

Fig. 8 Total distance for each sequence generated in each
training session. Each training session is indicated by an
individual color.

Figure 8 does not show any clear signs of converging
towards the real optimal solution, however, it is seen

7



that the exploration of the agents occasionally causes
them to diverge and starts outputting sequences with
higher distance and after a while converge back towards
sequences of lower distances.

For this test, distances are only recorded for successful,
and thus complete, sequences. As described previously,
the agents seems to struggle with getting past the
critical point and this test seems to indicate that some
optimization of the sequence of pick and place skills
may occur before the agents eventually learn to apply
the tool change and proceed. As the majority of the
assembly sequence is related to picking and placing,
this means that once the agent passes the critical point
and learns to output a complete sequence, the majority
of it may already be optimized to some degree, and
therefore, strong convergence is not seen on complete
sequences.

5.3 Output Sequence Optimality
The optimal assembly sequence is determined through
an exhaustive search to be a total of 1.867m long and
defined as PCB, Switch 1, Switch 2, Transformer, Clock,
Brace, Fasten 1, Fasten 2. Correspondingly, this can be
written in terms of skills, following the discretization
from Figure 6, as [0,1,2,3,4,5,8,9,6,7,10,11,13,14,15].

After training the ten models for 20000 steps, the best
output sequence and its distance, along with its deviation
from the real optimal solution, is determined and can be
seen summarized in Table III. N/A values are attributed
to models which failed to produce a feasible sequence
within the training session.

Tab. III Results from sequence optimality test.

Test Output Sequence Distance Deviation
1 [0,1,4,5,2,3,8,9,10,11,6,7,13,14,15] 1.880 0.70%
2 N/A N/A N/A
3 [0,1,2,3,4,5,8,9,10,11,6,7,13,14,15] 1.867 0.00%
4 [0,1,4,5,2,3,8,9,10,11,6,7,13,14,15] 1.880 0.70%
5 [0,1,2,3,4,5,6,7,8,9,10,11,13,14,15] 1.885 0.96%
6 [0,1,2,3,4,5,8,9,10,11,6,7,13,14,15] 1.867 0.00%
7 [0,1,2,3,4,5,8,9,10,11,6,7,13,14,15] 1.867 0.00%
8 [0,1,6,7,2,3,8,9,4,5,10,11,13,14,15] 1.939 3.86%
9 N/A N/A N/A

10 [0,1,2,3,4,5,8,9,10,11,6,7,13,14,15] 1.867 0.00%

It should be mentioned that the agents that failed in
generating a full sequence still managed to complete all
of the pick and place tasks.

Though the previous tests shows that the agents are
not converging towards the real optimal sequence, four
agents succeeded in running through it at some point

before diverging again, while the other agents also
comes relatively close.

6. Conclusion
A reinforcement learning algorithm is designed to
generate feasible assembly sequences based on a
fixed discrete action space, while collision detection
algorithms could be used to determine feasibility of
specific actions, where actions are defined as specific
robot skills. The actions are discretized such that an
action defined a complex trajectory. Reward schemes
are used to incentivize the generation of feasible and
optimal assembly sequences based on distances for these
actions. A critical point is found for the agents, which
is learning to apply a tool change and continue the
assembly afterwards, where either they would succeed
and complete the sequence, or fail and become stuck in a
local minima. Experiments indicated that agents showed
signs of learning as intended. Success rates of output
sequences increase over time and sequences converge
near the real optimal assembly sequence.

7. Future Work
For future work it would be interesting to scale the
assembly products by modifying the state space and
including more options and test to see if the agent would
be able to find assembly sequences for a wider selection
of products. Products that require multiple tool changes
would be of particular interest, to evaluate the influence
of the critical point.

Furthermore, other algorithms than DQN, e.g., more
modern ones such as Proximal Policy Optimization
(PPO), is also suggested to see if they can improve
learning capabilities.

Finally, sensors capable of evaluating pre- and postcon-
ditions should also be developed, to provide a higher
reliability of the system and make it more rigid.

Acknowledgement
The authors of this work gratefully acknowledge
Grundfos for sponsoring the 10th MechMan symposium.

References
[1] Z. Xue, J. Liu, C. Wu, and Y. Tong, “Review of

in-space assembly technologies,” Chinese Journal
of Aeronautics, vol. 34, no. 11, pp. 21–47, 2021.

[2] Use of Extraterrestrial Resources for Human
Space Missions to Moon or Mars. Springer
International Publishing, 2nd ed., 2018.

8



[3] J. De Winter, I. Makrini, G. Van de Perre,
A. Nowé, T. Verstraten, and B. Vanderborght,
“Autonomous assembly planning of demonstrated
skills with reinforcement learning in simulation,”
Autonomous Robots, vol. 45, no. 8,
pp. 1097–1110, 2021.

[4] M. Rashid, W. Hutabarat, and A. Tiwari, “A
review on assembly sequence planning and
assembly line balancing optimisation using soft
computing approaches,” The International Journal
of Advanced Manufacturing Technology, vol. 59,
pp. 335––349, 2012.

[5] Z. Saribatur, V. Patoglu, and E. Erdem, “Finding
optimal feasible global plans for multiple teams
of heterogeneous robots using hybrid reasoning:
an application to cognitive factories,”
Autonomous Robots, vol. 43, pp. 213––238,
2019.

[6] T. De Fazio and D. Whitney, “Simplified
generation of all mechanical assembly
sequences,” IEEE Journal on Robotics and
Automation, vol. 3, no. 6, pp. 640–658, 1987.

[7] B. Sunil, V and S. Pande, S, “Webrobot: Internet
based robotic assembly planning system,”
Computers in Industry, vol. 54, no. 2,
pp. 191–207, 2004.

[8] L. Xu, C. Wang, Z. Bi, and J. Yu, “Autoassem:
An automated assembly planning system for
complex products,” IEEE Transactions on
Industrial Informatics, vol. 8, no. 3, pp. 669–678,
2012.

[9] I. Rodriguez, K. Nottensteiner, D. Leidner,
M. Kaßecker, F. Stulp, and A. Albu-Schäffer,
“Iteratively refined feasibility checks in robotic
assembly sequence planning,” IEEE Transactions
on Industrial Informatics, vol. 8, no. 3,
pp. 669–678, 2012.

[10] R. Sutton and G. Barton, Reinforcement learning:
an introduction. The MIT Press, 2nd ed., 2018.

[11] S. Bøgh, O. Nielsen, M. Pedersen, V. Krüger, and
O. Madsen, “Does your robot have skills?,” 2012.

[12] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu,
K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State, “Isaac gym:
High performance gpu-based physics simulation
for robot learning,” arXiv:2108.10470v1 [cs.RO]
24 Aug 2021, pp. 4–31, 2021.

[13] A. Serrano-Muñoz, N. Arana-Arexolaleiba,
D. Chrysostomou, and S. Bøgh, “skrl: Modular
and flexible library for reinforcement learning,”

2022.
[14] J. Peters and S. Schaal, “Learning operational

space control,” pp. 1–8, 2006.

9


	Introduction
	Related Work
	Background
	Assembly Product
	Reinforcement Learning
	Robot Skill Portfolio
	Simulation of Collisions

	Experimental Setup
	Physics Simulation Environment
	Reinforcement Learning Agent
	Collision Detection
	Robot Trajectory Planner

	Experiments and Results
	Output Sequence Feasibility
	Minimum Distance Convergence
	Output Sequence Optimality

	Conclusion
	Future Work

