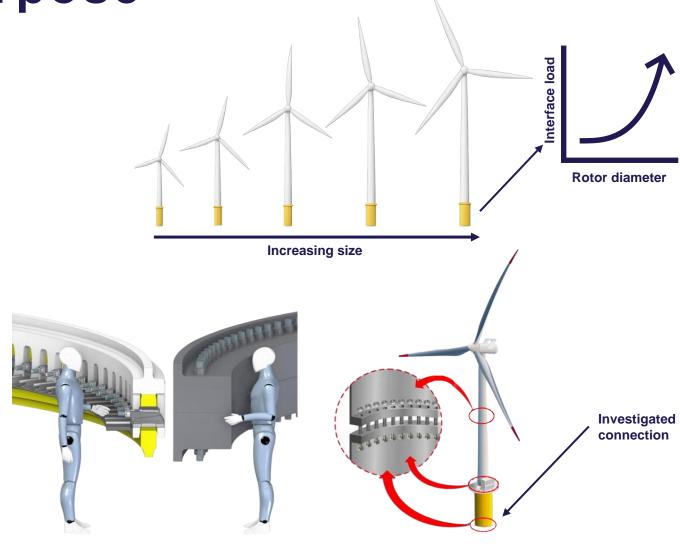
Structural Analysis of Bolted L-flange and C1 Wedge Connection for Offshore Wind Turbine Support Structures

Hasan Al Ali – Jeppe Jakobsen – Jonas Klint Junker

Aalborg University

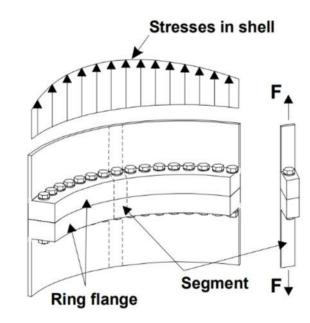
Structural and Civil Engineering

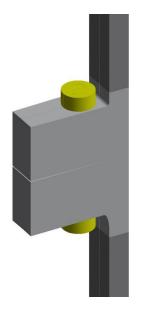
Master Thesis

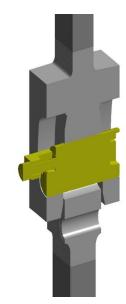

Content

- Motivation and purpose
- Methods
 - Analytical methods
 - FEA
- Results
- Conclusion

Motivation and purpose


- Climate change and global warming
 - Growing demand for sustainable solutions
 - This has led to an expansion
 - Size and loads
 - Requires greater structural capacity
 - On the limit of feasibility
- Compare two flanges at 8 meter outer diameter
 - Bolted L-flange
 - C1 Wedge Connection
- Limit states
 - Ultimate limit state
 - Fatigue limit state





Methods

- Segment model approach
- Ultimate limit state
 - Analytical expressions:
 - Plastic hinge theory for the L-flange using principle of virtual work
 - Yielding of cross-sections in tension for the C1 Wedge Connection
 - Non-linear Finite Element Analysis (FEA)
 - Material models, contact conditions and geometry
- Fatigue limit state
 - Miner's rule based on design equivalent moment (DEM) and stress concentration factors (SCF)
 - SCF's found by FEA using linear material models

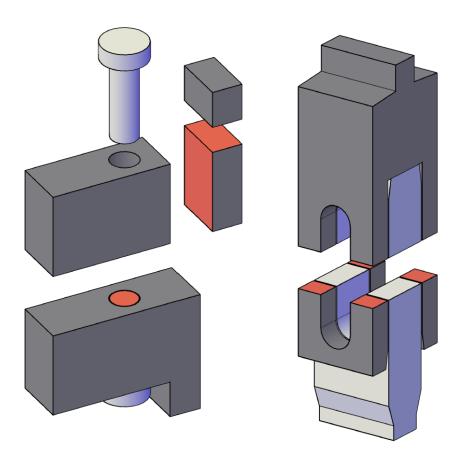
Analytical

Results

- Assumed failure mode:
 - L-flange:
 - > Bolt yielding and plastic hinge forming in the can or flange element
 - C1 Wedge Connection:
 - Yielding of upper webs

653 MNm

L-Flange


Analytical Design ULS Capacity

742 MNm

C1 Wedge Connection

Analytical Design ULS Capacity

*13.6% greater than L-Flange

Finite Element Analysis

Results

- Expected failure mode:
 - L-flange:
 - Bolt yielding and plastic hinge forming in the can or flange element
 - C1 Wedge Connection:
 - Yielding of upper webs
- FEA verifies the analytical approach

698 MNm

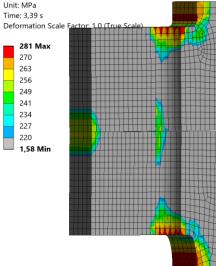
L-flange

Numerical Design ULS Capacity

*6.8% greater than analytical

973 MNm

C1 Wedge Connection

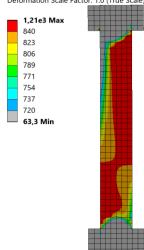

Numerical Design ULS Capacity

*31.1% greater than analytical

*39.4% greater than L-flange

C: Non-Linear bolt material

von Mises for flange 1.39 x ULS Type: Equivalent (von-Mises) Stress

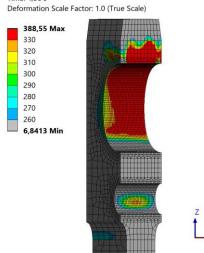


Type: Equivalent (von-Mises) Stress Unit: MPa Time: 3,39 s

Deformation Scale Factor: 1.0 (True Scale)

C: Non-Linear bolt material

Bolt stress 1.39x ULS



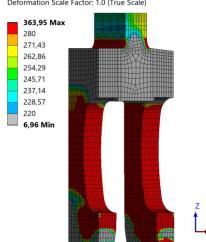
E: C1WC_Half segment Model assembly_ULS up to failure

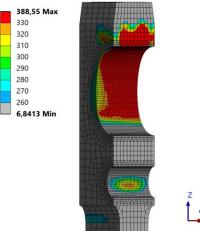
von Mises LF 4.56 sec

Type: Equivalent (von-Mises) Stress

Unit: MPa Time: 4,56 s

E: C1WC_Half segment Model assembly_ULS up to failure


von Mises UF 4.56 sec


Type: Equivalent (von-Mises) Stress

Unit: MPa

Time: 4,56 s

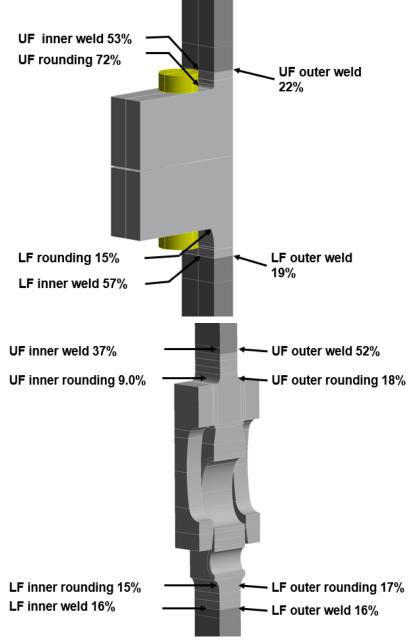
Deformation Scale Factor: 1.0 (True Scale)

Fatigue

Results

- Design Equivalent Moment of 230 MNm
- SCF and S-N Curves
- Miner's rule determined the accumulated damage

72%


L-flange

Highest accumulated fatigue damage

52%

C1 Wedge Connection

Highest Accumulated fatigue damage

Conclusion

- C1 Wedge Connection
 - Greater capacity at 8 meter outer diameter in both limit states
 - Better scalability for larger turbines
 - Faster on-site installation
- L-flange
 - Easier maintenance if failure occurs
 - Normalized and faster production
 - More practical experience
- Choice should be based on needed capacity and overall cost

Description	Bolted L-flange	C1 Wedge Connection
Analytical design moment (ULS)	653 MNm	740 MNm
Numerical design moment (ULS)	698 MNm	973 MNm
Highest accumulated fatigue damage (FLS)	72% (Rounding)	52% (Weld)
	Easy maintenance if failure occurs,	
Considerations	normalized and faster production, more	Faster on-site installation
	practical experience, less material usage	

