
THE 7th
 STUDENT SYMPOSIUM ON MECHANICAL AND MANUFACTURING ENGINEERING

Agent-based framework for Reconfigurable Manufacturing Systems

A. Vinulescu, D. Sarancic, M. Kolek, S. Zelazny

Department of Materials and Production, Aalborg University
Fibigerstraede 16, DK-9220 Aalborg East, Denmark

Email: szelaz13@student.aau.dk,
Web page: http://www.mechman.mp.aau.dk/

Abstract

In the times of highly volatile global markets, manufacturers find themselves having to adapt to fluctuating demands,
shorter product life cycles and high customer expectations regarding delivering a customized product. This gives rise to
a new era of Reconfigurable Manufacturing Systems (RMS), that offer a higher degree of flexibility and changeability,
making them more suited for competitive markets. This article tackles the challenge of developing a the software
architecture enabling the operation of a reconfigurable manufacturing system, capable translating the product to a set
of processes needed to create it and handle their execution. The created framework is capable of supporting any type
of manufacturing process, demonstrated on the case of a multi-agent robotic assembly.

Keywords: Reconfigurable manufacturing, agent-based framework, plug-and-produce, robotic assembly

1. Introduction
The effort of the manufacturing companies to sustain
competitive advantage in nowadays rapidly changing
markets represents a challenging task, as the manu-
facturing systems need to respond and quickly adapt
to fluctuations in demand, product mix and frequent
introduction of new product variants [1]. The capabil-
ity to operate robustly at high throughput (typical for
dedicated manufacturing systems - DMS) or agilely as
a response to market demand but at lower through-
put rate (typical for flexible manufacturing systems -
FMS), is balanced by the reconfigurable manufacturing
systems (RMS) for which capacity and functionality
can be changed exactly when needed. While DMS and
FMS present rigidity at the capacity-functionality level,
RMS presents minimized constraints for capacity or
functionality, due to the ability of instating rapid system
configuration changeover in response to the capacity
demand.

1.1 Study case - AAU Smart Production Lab
In the light of the trend described in the previous section,
Aalborg University (AAU) has in 2016 purchased the
AAU Smart Production Lab (Smart Lab), an automated
modular assembly to be used as a technology demon-
strator and research platform for Industry 4.0. Currently
the system assembles unusable phones consisting of a
printed circuit board (PCB), fuses, an upper and lower
housing part. It is wished that the product family will be

extended to new product configurations, shown in figure
1 in order to imitate a scenario for which the assembly
line needs to accommodate product mix and variation.

Fig. 1 The extended product

The product is assembled as it passes through as
series of assembly processes performed by particular
equipment (i.e. drill), referred to as process modules.
The process modules are mounted on top of modular
stations which have the function to transport the product
by mean of conveyor belts.

To simulate eventual scenarios where the capacity
throughput of the assembly line could be increased when
needed, the assembly line is desired to gain abilities
of fast rerouting and reorganization of resources. On a
theoretical level, the capacity increase can be achieved
by modularizing the different components in the robot

1

mailto:szelaz13@student.aau.dk
http://www.mechman.mp.aau.dk/

cell of the assembly line, shown on figure 2 in order
to make them recognizable and operate independently
of each other. The components which should be split
into modules are: (1) the vision module which detects
part orientation, (2) the PCB magazine dispenser and
(3) the fuse dispenser. Once the physical reorganization
of the process modules is carried out, a software
architecture model becomes an indispensable part to
support the physical changes. Thus, the focus of the
current research is oriented towards the development of
a data interconnection model.

Fig. 2 Modules inside the robot cell

2. Related work
As the underlying control architecture is the true en-
abling factor for achieving an ideal "plug and produce"
system, different strategies for meeting the growing
demand for flexibility have evolved over time. Early
90’s started the trend with the concept of Flexible
Manufacturing Systems (FMS), [1] [2] extending the
systems capabilities to handle a larger span of variety
although at the expense of added cost in the system
[3]. In order to avoid investing in dedicated equip-
ment which is limited in functionality, the focus has
shifted towards designing more agile systems, leading
to a wave of new paradigms: Holonic Manufacturing
systems, Modular Manufacturing systems, Evolvable
manufacturing systems and more, [4], [5], [6], all built
around the principle of moving away from centrally
controlled systems towards encasing the functionality
of the control system into independent modules. This
allows to easier scale, change, maintain, reuse and
upgrade the equipment and its software, by reducing
the amount of inter-dependencies, and aiming towards
more task-specific modules extending the production
capability as needed.

The latest contributions to this paradigm, which are
used as frame of references for this system are the EU-
sponsored IDEAS (Instantly Deployable Manufacturing
Systems) project [2] and it’s successor the OpenMOS
(Open Manufacturing Operating System) project, aim-
ing to develop a common, openly accessible plug-and-
produce system platform, independent of the specific
industry [7].

While the OpenMOS project has developed a very
encompassing semantic model, describing almost every
thinkable aspect of operating a manufacturing system
[8], there are few publicly available descriptions of how
this philosophy is implemented in practice. Secondly,
current literature on the robotic pick-and place opera-
tion, the modularity of which is the key changeability
enabler for the Smart Lab, often overlooks the role of
the cell fixture and feeder, assuming their position and
type is static, and focusing in the interaction between
other assets (part-robot or robot-robot) inside the robot
cell.

This paper presents a software framework developed
for enabling a plug & produce capability of the Smart
Lab, with a special focus on the robotic pick and place
process. However in order to make the solution flexible,
scalable and "future-proof" the framework is developed
to treat the Lab as a specific instance of a generalized
theoretical model. In this way the framework is also
relevant to any other assembly-line production system,
especially those whose operation requires rapid and
frequent changeovers.

3. Approach
In order to systematically approach the design task
described in section 1 a semantic network model pro-
posed for the Smart Lab is presented in section 4. This
model creates a set of general entities used to describe
a production system. Based on this formalization, a
software architecture was built around it and is presented
in section 5, defining all relevant components required
to operate the manufacturing system. Based on this ar-
chitecture a execution protocol was designed, specifying
the sequence and communication during execution of a
manufacturing process. This protocol, described in sec-
tion 5.2 can then be extended to involve multiple agents
collaborating on a task, in this case a robotic pick-
and-place assembly, as described in section 5.3. Finally,
having established a structure for executing an assembly
and a process sequence, the concept for executing more
tasks in parallel is introduced and described in section

2

5.4.

4. Ontological model
The field of ontology works with the formal representa-
tion of concepts, the organization of these into classes
along with associated attributes and their mapped mu-
tual relations [9] [10]. Based on similar work by Lohse
et. al [8] the semantic network model of the Smart Lab
created is shown in figure 3. In order to create a model
that would be able to accommodate future processes
and products, the production system is in its basic form
modelled as two generic types of entities:

• A product recipe, which is a list of processes
needed to be executed in order to assemble the
product components

• Specific skills representing the capabilities of the
process modules to execute the processes.

According to the processes family, the processes can
further be classified into simple processes requiring only
one skill (eg: a drilling station) or complex processes
requiring the more complex cooperation of multiple
skills (eg: an assembly operation.)

Fig. 3 Semantic model of the process and skill concept.

In a manufacturing system the skills are manifested
by the process modules. With the advent of affordable
industrial grade micro-controllers, it is envisioned that
each process module(i.e. a machinery for drilling) per-
forming a function will be outfitted with a microcon-
troller capable of presenting the process module’s skills
to the master control system (i.e. MES). The process
module and the microcontroller would create what by
Pritschow [11] would be denoted as mechatronic agent.

The mechatronic agents represent the entities which can
be added or removed from an manufacturing system
which enables a vast flexibility to re-configure a man-
ufacturing system, according to the equipment and its
routing needed.

The control of the different settings of the process
module, (i.e. the drilling pattern and depth of the holes)
is performed using specific process parameters passed
to the skill executing them.

As depicted in figure 4, the process parameters stored
in the product recipe, are passed in a string format,
which allows each equipment vendor to use their
preferred/legacy-dictated method to pass the parameters
to their equipment by encoding them into the string, (eg.
using XML or a similar markup language.)

As the actuator logic is stored on the mechatronic
agent, the modularity of the factory goes beyond the
mere interface compatibility of hardware, but extends
to self-configuring the process logic of the assembly
system.

Fig. 4 Excerpt from a product recipe.

Apart from the process parameters, the process entity
contains other fields, such as a placeholder for feedback
from the agent (eg. a dump of sensor values for future
data analysis), as shown in figure 4. As an alternative to
the placeholder, timestamps could be created traceability
of the order throughout the production. Together the

3

fields contain all the information needed to control and
monitor any type of manufacturing process that can be
added to the Smart Lab.

5. Software Architecture
The ontology described in section 4 is in practice
realized by using the infrastructure already built into
the Smart Lab. The recipes are managed by a Manufac-
turing Execution System (MES) running on a personal
computer, which via the common connection bus is con-
nected to the PLC of each basic module(workstation).
This in turn connects to the process modules, as shown
in figure 5. All the information such as the process
parameters and the process feedback is passed between
the parties via. a TCP-IP connection.

Fig. 5 Overall software architecture.

Product configurator
The recipe is envisioned to be generated by the
product configurator, which based on the customers
wishes, assembles together a recipe for the product.
As the process parameters for each skill are vendor-
specific, the product configurator receives the process
parameter string for a given machine setting (as a
plugin), accompanying the given equipment module,
as illustrated in figure 6. This approach implies that
each configuration of the product can be created by
assembling together a list of all the necessary processes,
in contrast to the current setup, which stores all the
possible product combinations in a database.

Introducing a new process or an update would then
only require changing a single plugin, instead of finding
and updating all the affected combinations in the
database. As the processes have an optional field for
the parts consumed, the finished recipe can then act as a
Manufacturing Bill of Materials (mBOM), in connection

with an ERP system, the configurator can therefore be
used for checking the availability of all parts needed in
the recipe.

Fig. 6 Interaction between the product configurator and the
software plugins.

MES system
The MES-system is responsible for executing and
managing the order recipes, acting as a server for the
process agents, it handles data requests to the internal
database of pending and executed recipes.
Additionally the MES system is responsible for routing
the carriers on the conveyor system. At system start-
up the MES learns the physical layout of the plant
(currently via. manual input). When a carrier arrives at
a conveyor branch, the basic module PLC responsible
for operating the conveyors reads the "next_skill" field
on the carrier RFID and requests a direction. The MES
system, then guides the branch module, knowing the
direction which will lead to the desired process.

Post-processing and optimization
After the recipe for a given order has been executed
the "Feedback" fields and time stamps from each
process can be collated in a data log of all relevant
information, such as results from the automatic quality
control, sensor values from the machine during process
execution etc., creating a data trace for each phone
produced.
A data analysis tool can then be used to analyze the log
files and improve future product recipes, for example by
fine tuning the length of the release timer, described in
figure 11 of section 5.4, in order to match the merging
of the two process streams.

4

5.1 System operation
In order to operate the manufacturing system, all process
modules are first physically mounted/rearranged on the
Smart Lab and connected to the network sockets. A
zero-configuration network routine is then performed
to establish a connection between the parties and
uncovering the network structure shown on figure 5.
Next, the MES system requests each agent to identify
their skill that they offer, and compares the list of
available skills with the skills required in the pending
recipes. As the MES system also knows physical layout
of the plant, using the network topology, it is then able
to create a map of were the modules are located, which
is later used for directing the phone carriers.
Once the availability of all skills has been confirmed,
the recipe is put into production by the MES directly
ordering the PLC with of the first process module to
start execution.

5.2 Executing a simple skill
After the first process has been triggered directly from
the MES, the execution of each subsequent process is
de-centrally initiated by the part carrier.

Fig. 7 Execution of a single-skill process

The diagram on figure 7 shows the execution of a simple

process involving only one skill agent:

1) The part carrier arrives at the conveyor stopper of
the basic linear module. The PLC from the basic
module reads the order number and "next process_
skills" field on the RFID tag of the carrier, and
compares it with its internal list of skill agents
connected to it. If the skill needed is present, the
carrier is stopped.

2) Using the serial number, the PLC requests the
process parameters for the operation from the
MES system, and passes them on to the relevant
process module. The MES system creates a
timestamp for the process start in the product
recipe.

3) Based on the passed process parameters, the
process module micro-controller executes the
operation. It passes back a confirmation, together
with the process feedback. The PLC passes those
back to the MES system, which updates the
process in the recipe as executed, and returns the
skills needed for the next operation in the recipe.

4) The PLC flashes the next operation onto the RFID
chip, and, if the next operation is not on the same
station, releases the carrier.

This arrangement is very similar to what is currently
implemented at the Smart Lab, with the exception of
the vendor-independent process control the feedback
information being collected and stored.

5.3 Executing a multi-agent assembly
Building on the same principles the process can be
extended to involve multiple skill agents, with the most
relevant multi-agent process being the assembly, as both
the fuses and the PCB are inserted using a robot, as
described in section 1. In a generalized approach, an
assembly involves three parties shown on figure 8: A
feeder being the module dispensing the needed part,
a fixture being the intended target the part is to be
inserted to and a mover being an agent (whether human
or robotic) capable of performing the assembly. Each of
them is represented as a skill, possessing information
about their own position and state needed to complete
the assembly. As the assembly requires coordination
between the parties, an orchestrator entity is introduced,
being a software agent running on the Linear module
PLC, responsible for gathering the information and
generating a motion path for the robot.

5

Fig. 8 Semantic model of the 3 assembly agents. Fields
embraced by parenthesis "(..)" are optional.

The UML diagram on figure, 11, shows the execution
logic for an assembly:

1) The first steps in the assembly process are identi-
cal to steps 1 and 2 for a simple process, described
in figure 7 and section 5.2. But additionally, apart
from the skills needed to execute the assembly, the
process recipe can optionally specify additional
information needed for the assembly that has to
be requested from the MES system. (Eg. in the
case of the Smart Lab, the orientation of the lower
housing on the carrier, which is inspected by a
vision system prior to carrier entering the robot
cell.) The process parameters sent back from the
MES system specify the part ID of the part to be
picked from the feeder, and the fixture slot ie. the
position in the fixture the part should be inserted
into. (for example, the lower fuse holder in the
PCB is a fixture slot)

2) The process parameters and the additional infor-
mation are further passed to the assembly orches-
trator within the PLC. The orchestrator connects
to the agents and awaits the feeder validation of
the Part ID (is the part available in the feeder).
The feeder specifies the name and tool offset for
the gripper in respect to the robot flange. The
availability of the fixture slot is also validated as
parallel routine (is the requested slot an existing,
free slot in the fixture).

3) If both replies are positive, the orchestrator re-
quests the process module’s anchoring coordinates
and it’s pick-up point in respect to a global
coordinate system of the assembly station (i.e. a
stopper or a corner of a table). This establishes the
points for the trajectories used the pick-and-place
routine as illustrated in figure 9.

Fig. 9 Illustration of a pick-up path being specified by the
fuse dispenser, guiding the robot gripper

4) The robot has a known collision-free space,
as shown on figure 10 in which it can move
between the end-paths specified by the other
modules. Based on the information gathered, the
orchestrator generates pick-up point coordinates
for the robot to pick up the part from the feeder
and place it in the assembly, and asks the robot
to execute it, then confirms the part has been
dispensed and inserted successfully.

Fig. 10 The assembly station, as seen by the assembly
orchestrator. The pick-up and place locations are specified
by the feeder and fixture respectively, while the orchestrator
connects the two endpoints in the known collision-free space
marked in green.

5) Before the carrier leaves, similar to the step
4 in section 5.2, the fixture receives the part
ID of the new assembly. This enables the sub-
assembly to be used as a part in another assembly
process, where the fixture becomes a feeder for
the next process. (For example: The fuses are

6

inserted into the PCB’s waiting on the PCB tray,
where the PCB tray becomes a feeder when the
new PCB/fuse sub-assembly is inserted into the
housing.)

By using this set-up, the robotic assembly becomes
an instance of a generic pick-and place process,
independent of the specifics of the robot cell application.
As all the information about the fixtures and feeder
is carried within the relevant modules, modifying the
robot cell would only require changing the modules
and updating their local origin positions in the global
coordinate system. This could be achieved by using
a set of defined mounting points on the slot table
(i.e. a stopper) and by using a hooking mechanism
for accurately positioning the additional robots. The
sophistication of the fixture and feeder can also vary,
ranging from the simple fuse feeder, shown on figure
9, to more advanced, vision-based solutions, depending
on the application.

5.4 Multiple production lines
The processes in the existing assembly line configu-
ration, can only be executed sequentially. To increase
the flexibility and speed of the production system, the
project recipe can be configured to include a parallel
stream of processes, as shown on figure 12. The exe-
cution of the processes in the parallel branch follows
the same methodology as described in section 5.2. The
first process is invoked directly by the MES system,
and is triggered when a another process in the main
branch starts. At the end of the parallel production
stream the sub-assembly is put in a waiting pool, until
the correct carrier arrives at the main assembly line. It
is assumed that two production lines are always merged
by an assembly operation.

A waiting timer can be inserted between the process
trigger and execution start, to better time the rendezvous
of the two parts. An example of this being applied in
the Smart Lab would be the 3rd configuration described
in section 1, where the fuses are inserted into the PCB’s
on a side branch of the production line and assembled
into the main carrier.

Fig. 11 UML activity diagram for the assembly sequence.

7

Fig. 12 The two parallel processes - Fuse insertion into the
PCB

6. Conclusive results and future work
The framework described in this paper has been im-
plemented in a simple technology-demonstrator setup,
utilizing 3 Raspberry Pi single-board computers, con-
nected in a cluster. The Raspberries are communicating
via a direct TCP-IP connection, as shown in figure 13.
One Raspberry Pi is acting as the MES system and
it hosts a server for the client Raspberry Pi which is
emulating the station PLC. Order recipes, in the form
of an SQL database, are also stored on the Raspberry Pi
which is acting as the MES system, where the database
is accessed utilizing a Python client to handle the SQL
queries. The remaining Pi is emulating the agent, which
acts as a client to the second server hosted on PLC
emulator.

Fig. 13 Prototype setup scheme

A future expansion of the current project could be
to implement it using the OPC UA communication
protocol, which is intended for IoT devices and provides
communication between field devices and upper control
levels. The protocol offers platform-independent web-
services-based data model, allowing to create OPC UA
"Programs" (semantic models) that expose the data
from a device to the system [12] [13]. Furthermore,
the protocol offers a number of other functionalities,

such as a Discovery Server feature allowing newly
connected clients to automatically connect themselves
to the network, which would simplify addition of new
process modules in the Smart Lab, or a Historian Server
type allowing to collect and store data from multiple
OPC UA servers into one central location [13].

Acknowledgement
The authors of this work gratefully acknowledge
Grundfos for sponsoring the 7th MechMan symposium.

References
[1] H. A. ElMaraghy, Changeable and Reconfigurable

Manufacturing Systems. Springer, 2009.
[2] M. Onori, N. Lohse, J. Barata, and C. Hanisch,

“The ideas project: Plug & produce at shop-floor
level,” Assembly Automation, vol. 32,
pp. 124–134, 2012.

[3] P. Ferreira and N. Lohse, “Configuration model
for evolvable assembly systems,” 4th CIRP
Conference on Assembly Technology and
Systems, 05 2012.

[4] R. F. Babiceanu and F. F. Chen, “Development
and applications of holonic manufacturing
systems: A survey,” Journal of Intelligent
Manufacturing, vol. 17, no. 1, pp. 111–131, 2006.

[5] Z. M.Bi, S. Lang, W. Shen, and L. Wang,
“Reconfigurable manufacturing systems: the state
of the art,” International Journal of Production
Research, vol. 46, no. 4, pp. 967–992, 2008.

[6] Z. M.Bi, S. Lang, W. Shen, and L. Wang,
“Current status of reconfigurable assembly
systems,” International Journal of Manufacturing
Research, vol. 2, no. 3, pp. 303–328, 2007.

[7] OpenMOS, “Aim & objectives.”
[8] N. Lohse and P. Ferreira, “Deliverable d3.7:

Common semantic model,” tech. rep., OpenMOS
project, 2018.

[9] T. R. Gruber, “Toward principles for the design
of ontologies used for knowledge sharing,” tech.
rep., Knowledge Systems Laboratory, Stanford
University., 1993.

[10] A.-B. M.Salem and M. Alfonse, “Ontology
versus semantic networks for medical knowledge
representation,” 2th WSEAS International
Conference on Computers, 2008.

[11] G. Pritschow and K-H.Wurst, “Control of
reconfigurable machine tools,” in Changeable and
Reconfigurable Manufacturing Systems (H. E.

8

Maraghy, ed.), ch. 4, pp. 266–290, Springer,
2009.

[12] K. Dorofeev and A. Zoitl, “Skill-based
engineering approach using opc ua programs,”
2018 IEEE 16th International Conference on
Industrial Informatics (INDIN), pp. 1098–1103,
2018.

[13] O. U. Foundation, “Opc unified architecture
specification,” tech. rep.

9

	Introduction
	Study case - AAU Smart Production Lab

	Related work
	Approach
	Ontological model
	Software Architecture
	System operation
	Executing a simple skill
	Executing a multi-agent assembly
	Multiple production lines

	Conclusive results and future work

