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Abstract
A key feature in mobile robotics is obstacle avoidance and perception of the environment. As such, this project
creates a sensor fusion algorithm with multi-sensor input, in order to perform obstacle avoidance. The project is
made in collaboration with Capra Robotics ApS and will be based on their Hircus 1.0 platform. The platform has
two integrated ultrasonic sensors, and a RadarIQ-M1 will be installed for the purpose of this project. The sensor
fusion will be made through a particle filter, which is a probabilistic method capable of detecting multiple objects.
To perform obstacle avoidance, an algorithm based on the PointBug will evaluate the sensor fused data, and move
the robot through unknown environments with both static and dynamic obstacles.
To test the sensor fusion, comparisons will be made of the output from the individual sensors and output from the
sensor fusion. From this, a qualitative assessment will be made. The obstacle avoidance algorithm, will be tested in
various settings and finally be compared to the obstacle avoidance of the MiR100.
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1. Introduction
Obstacle avoidance is a fundamental requirement for
mobile robotic systems to operate safely and efficiently
in dynamic environments. The challenge lies in the
uncertainty of the movements of dynamic obstacles,
which makes it difficult for navigation systems to
compute collision-free paths [1]. To tackle this issue,
a common approach in mobile robotics is to rely on
sensors such as laser radar, Light Detection and Ranging
(LiDAR), and camera-based sensors. However, these
sensors have their limitations, particularly in extreme
outdoor weather conditions and heavy occlusion.

Radar sensors offer an advantage in detecting obstacles
in inclement weather conditions, but often produce a
sparse interpretation of its environment [2]. Ultrasonic
sensors, have the capability of detecting static and are
widely used for obstacle detection in mobile robotics
due to their low cost and high detectability for different
textures [3].

To provide accurate and reliable obstacle detection and
avoidance in various outdoor environments, a novel
approach has been proposed to fuse ultrasound and
radar data for mobile robotic systems. The aim is to
overcome the limitations of individual sensors and to

create a feasible concept for full implementation. This
approach is being developed in collaboration with Capra
Robotics ApS, using their mobile robotic platform,
Capra Hircus 1.0 which can be seen in Figure 1. The
platform has two integrated ultrasonic sensors and for
the purpose of this project, a RadarIQ-M1 has been
installed.

Fig. 1 Render of the front left of the Capra Hircus 1.0, with
some of the key features highlighted.

2. Related work
A thorough review of related work and research is crit-
ical for developing an effective obstacle avoidance sys-
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tem for mobile robots that utilises ultrasonic sensor and
radar technology. As such, the following section will
introduce key studies in the field of obstacle avoidance
based on sensor fusion. To achieve a comprehensive re-
view, each part of the field will be described individually
in the following sections, i.e. obstacle avoidance and
sensor fusion, and at last be summarised and concluded
upon.

In the field of local navigation, obstacle avoidance
is done in cooperation between multiple aspects. A
fundamental part of obstacle avoidance is the underlying
algorithm responsible for decision making. Depending
on the algorithm, decisions can vary in complexity
and abstractness. A decision derived from an obstacle
avoidance algorithm can both be represented as a
trajectory in a complex system, or it can be represented
as a right/left command in a simple system [4]. With
offset in reviews of different approaches to obstacle
avoidance [5], [6], methods and theories in this field
will be investigated. These methods include fuzzy logic
controllers [7], [8], bug algorithms [9], [10], [11], [12],
trajectory and map based [5], [6], [13], [14], [15] and
finally moving obstacles [16], [17], [18], [8].

According to the results of current research in the
area of algorithms for obstacle avoidance, a range of
methods with different and unrelated bases have proved
effective in avoiding obstacles of various complexity.
Some approaches have gained even better results by
fusing multiple algorithms, exploiting only the best
of each algorithm [6]. It is also possible to conclude
that the most optimal choice of obstacle avoidance
algorithms largely depends on the application, as the
criteria for sensor accuracy and the computational load
vary greatly among different methods.

Sensors have a great influence on the obstacle avoidance
algorithms as the decisions are based on a representation
of the input data delivered by the sensors. As such,
the following investigates how sensor fusion has been
performed previously, to obtain a more thorough
understanding about how the sensors used in this project
should be fused.

This project focus on sensor fusion of imperfect data
from an ultrasonic sensor and a radar on the Hircus
platform. As such, only papers using sensor fusion of
imperfect data has been investigated. Specifically, fuzzy
sensor fusion [19], [7], [3] and probabilistic methods
including variations of Kalman filtering [20], [21], [22],
[23], and particle filtering [24], [25], [26], [27], [28],

[29] , [30], [31], [32] have been investigated.

From the studies investigated, it is observed that Kalman
filters, particle filters and fuzzy sensor fusion can all be
applied in mobile robotics. However, they are often used
in different settings. For example, it is observed that the
Kalman filter and fuzzy sensor fusion is applied in a va-
riety of tasks, such as single object detection and target
tracking, localisation, pose estimation and range estima-
tion [20], [21], [22], [23], [7], [3]. Where particle filters
are primarily used in localisation tasks [28], [29], [27]
and multi-object detection [25], [26].

Based on the investigated studies and the sensor data
available with two ultrasonic sensors and a RadarIQ-
M1, it has been determined that particle filtering can
provide the best estimation of the environment. The
obstacle avoidance algorithm will be based on principles
from the PointBug algorithm, which is one of the most
recently developed bug algorithms. This algorithm has
shown to be easy to implement and have the necessary
capabilities for further development and expansion of
the algorithm.

3. Methodology
As the Hircus platform is currently capable of driving
between Global Positioning System (GPS) coordinates
in a straight line, the aim of this project is to add a local
planner to the existing global planner. The local planner
will start whenever obstacles are detected within 1.9m
of the robot. If no obstacles are detected, the robot will
only rely on the existing global planner.

3.1 Sensor fusion
As mentioned in section 2, the sensor fusion method
which will be used in this project is a particle filter using
the input from the two integrated ultrasonic sensors and
the RadarIQ-M1. The data obtained from the ultrasonic
sensors is range measurements which only state the
distance to the nearest obstacle in the sensors’ Field Of
View (FOV). The data from the radar is a sparse point
cloud, transformed according to the position and angle
of the front wheel which the radar is mounted on.

The algorithm has been divided into the 4 different steps
of particle filtering. These steps include: Initialisation,
prediction, update and resampling. In the initialisation
step, the particles of the filter are initiated with an [x, y]
position and a weight. The position of the particles must
be within the FOV of at least one of the three sensors. In
the prediction step, the particles are applied with some
variance in both the x and y direction. Furthermore,
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33% of the particles are randomly distributed again to
ensure objects are detected when they appear in the
FOV. In the update step, the weight of each particle is
updated based on how close they are to the ranges of the
ultrasonic sensors and how close they are to each point
of the radar point cloud. The likelihood of belonging to
each range and point is calculated based on the equation:

f(∆, µ, σ2) =
1

σ
√
2π

e−
1
2(

∆−µ
σ )

2

(1)

Where ∆ is the euclidean distance between the particle
and point or range, µ is the mean, which has been set
equal to zero as the difference has already been calcu-
lated, and σ is the standard deviation. All likelihoods of
one particle are then multiplied to calculate the weight.

In the resample step, the particles are resampled
with a probability proportional to the weight of each
particle. Furthermore, by using K-nearest neighbour
search method, the algorithm has been limited to sample
maximum K points within a given area. The search point
of the K-nearest search will be the particle with the
highest weight and the neighbouring particles are stored
in a temporary vector. Then, K particles are resampled
proportional to the weight of the particles stored in the
temporary vector, i.e. some particles may be sampled
multiple times and some might not be sampled at all.
As the K amount of particles have been resampled, the
particles stored within the temporary vector are removed
from the original vector of particles and the process
is repeated. When finding the next search point for
the K-nearest neighbour search, a minimum distance
between the new search point and previous search points
must be fulfilled and the new search point particle must
have a weight above a certain threshold. If there are
no particles left with a weight above the threshold and
a minimum distance to previous search points, then
particles are randomly sampled until the desired amount
of particles have been resampled. The distance between
search points and K are parameters which have been
tested with different values to optimise the performance
of the algorithm.

Once the desired amount of particles have been
resampled, the prediction, update and resampling steps
are repeated continuously. Furthermore, after each
resampling step, clusters are determined in order to
produce a point cloud of obstacles for the point bug
algorithm. This is done by iterating through all particles
and comparing distances to the nearby points by using
a K-nearest search method, similarly to the resampling
step. A cluster is defined as an obstacle when it has

more than a certain amount of points located within a
circle with a specific radius. The amount of points and
radius of these clusters are parameters which have been
tested with different values together with the distance
between search points and K from the resampling step.
Furthermore, the filter has been tested with different
amounts of particles as well.

During parameter tuning, the best results were obtained
with 800 particles, cluster size of 70 points, cluster
radius of 5 cm, 60 nearest particles and a minimum dis-
tance between search points of 12 cm in the resampling
step.

3.2 Obstacle avoidance
The algorithm for obstacle avoidance is initialised with
parameters specifying the physical properties of the
robot and the desired behaviour of the robot. These
specifications will be fixed for the entire implementation
and will not change during the execution of the obstacle
avoidance. After the initialisation, the point cloud
obtained in subsection 3.1 will be transformed to follow
the frame of the robot, and not only the angle of the
front wheel. This allows a rolling map to be created.
However, as the heading of the robot is only accessable
for internal use, the rolling map will only include points
captured within 1.5 s. This timestamp have shown to
perform the best.
Based on the distance between the robot and the content
of the point cloud, i.e. obstacles, it will be determined if
obstacle avoidance should be executed. If an obstacle is
too close to the robot, it should be avoided by following
the underlying algorithm of PointBug [9].

Using this algorithm, a target vector from the robot,
pointing in the direction of the next GPS goal
coordinate should be calculated, along with the heading
of the robot. However, it is currently not possible to
obtain the coordinates of the goal through the Capra
Hircus, hence the target vector is calculated as the
relative heading of the robot when an obstacle gets
too close. The relative heading is represented as a
direction in the point cloud, as the true heading of
the robot is reserved for internal use by Capra Robotics.

The next step is then to determine every sudden point
in the point cloud. This is done by clustering nearby
points, that meet the criteria of a sudden point. A vector
to each sudden point is then calculated and compared
to the target vector. The vector closest to the target
vector will determine which sudden point the robot
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will move towards. As the target vector is infinite, due
to the lack of GPS coordinates of the goal target, the
length of the vectors will not be evaluated, but only
the angle will be used to determine sudden points.

In order to overwrite the global planner, the obstacle
avoidance algorithm calculates direct velocities. The
direct velocities sent for avoiding the obstacles are based
on the angle and distance to the sudden point and
not a path towards the sudden point. This modification
from the original proposal for the PointBug algorithm
is necessary as neither the geographical heading or
geographical target is possible to obtain from the current
Capra Hircus software. However, with only minor
changes, the algorithm could run with these parameters
if the internal topics of the robot could be accessed.

4. Experiments and results
In order to test the performance of the sensor fusion
and obstacle avoidance, the solution has been tested in
various settings. The different settings and the measured
parameters are based on earlier work done in the field
of obstacle avoidance for mobile robotics [8][33][14].

4.1 Test A: Fusion
First, the sensor fusion has been tested by comparing the
raw sensor input with the point cloud obtained through
sensor fusion when the robotic platform is not moving.
The test is performed with 3 different settings, where
the wheel angle and amount of objects is changed. In
setting 1, the wheel angle is 0◦, an obstacle is placed
in the FOV of each of the ultrasonic sensors and the
radar can see both obstacles. In setting 2, the wheel
angle is 60◦, an obstacle is placed in the overlapping
FOV of the ultrasonic sensors and an obstacle is placed
in the radar FOV. In setting 3, the wheel angle is 60◦

and only one obstacle is placed in the FOV of the right
ultrasonic sensor. The data from each of the sensors and
the fused point cloud is measured 100 times. The setup
and results from the three different settings can be seen
in Figure 2, 3 and 4, where the the measurements from
the radar, ultrasonic sensors and fused point cloud can
be seen.

From setting 1, the mean error for the radar, left
ultrasonic sensor, right ultrasonic sensor and fused
output is 0.133m, 0.036m, 0.074m and 0.125m,
respectively. Even though the ultrasonic sensors have
a lower mean error, they are still more inaccurate as the
error is calculated based on the provided range and not

a specific position. The results from setting 1 can be
seen in Figure 2.

Fig. 2 Setting 1: Setup to the left with ground truth of
obstacle marked orange. Results to the right with radar point
cloud marked blue, ultrasonic measurements marked green
and fused point cloud marked red.

From setting 2, the mean error for the radar, left
ultrasonic sensor, right ultrasonic sensor and fused
output is 0.094m, 0.019m, 0.053m and 0.145m,
respectively. From these results, it is observed that the
sensors individually provide a more accurate result.
However, they only describe one obstacle each, while
the fusion point cloud is capable of describing both
obstacles. Furthermore, the fusion point cloud gives a
good estimation of the position of the obstacle detected
by the ultrasonic sensors, while they only provide a
range. The results from setting 2 can be seen in Figure 3.

Fig. 3 Setting 2: Setup to the left with ground truth of
obstacle marked orange. Results to the right with radar point
cloud marked blue, ultrasonic measurements marked green
and fused point cloud marked red.

From setting 3, the mean error for the right ultrasonic
sensor and fused output is 0.016m and 0.159m,
respectively. The results from setting 3 can be seen in
Figure 4.
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Fig. 4 Setting 3: Setup to the left with ground truth of
obstacle marked orange. Results to the right with radar point
cloud marked blue, ultrasonic measurements marked green
and fused point cloud marked red.

From the three different settings, it can be concluded
that the sensor fusion provides a more reliable point
cloud than using the three sensors individually, espe-
cially when turning, as it is able to provide input from
the different sensors with higher accuracy in a single
point cloud than what is possible with the individual
sensors. The mean errors for the three sensors and the
fused point cloud can be seen in Table I.
Tab. I Mean error based on 100 measurements from the three
sensors and the fused output, in all three settings.

Setting Radar
Ultrasonic
sensor left

Ultrasonic
sensor right

Fused
output

Setting 1 0.133m 0.036m 0.074m 0.125m
Setting 2 0.094m 0.019m 0.053m 0.145m
Setting 3 0.016m 0.159m

4.2 Test B: Simple static obstacle avoidance
With a standardised test environment, this test is
designed to force a robot to do obstacle avoidance in
order to reach a specified goal. At the same time, each
obstacle can be traversed on a side that provides the
shortest path and a side that provides a longer path. The
test is specified and executed as illustrated in Figure 5.

Fig. 5 Illustration of the test setup for Test B.

After running the test 10 times for both the Hircus and
MiR100, the paths were mapped as seen in Figure 6 and
the parameters were calculated as seen in Table II.

Fig. 6 The recorded path of the Hircus (purple) and MiR100
(blue), with collisions marked red.

From the traversed paths and the measured parameters,
it can be concluded that the Hircus have multiple
collisions. Only one of the collisions do not happen at
a corner of the obstacle. Looking further into this run
reveals that the robot do not converge on which side
the obstacle should be traversed. The collisions at the
corners could potentially could be neglected by further
tuning of the algorithm. Comparing the successful runs
of the Hircus with the MiR100 shows that the Hircus
spent less time avoiding the obstacles than the MiR100,
but it travelled a greater distance. This is because the
Hircus do not change lower the speed as much as the
MiR100, while avoiding obstacles.
Tab. II Average deviations from the test. The "Time
deviation" and "Distance deviation" are averaged from the
successful runs. The "Successful runs" shows how many of
the 10 runs that were not terminated by collision.

Time deviation Distance deviation Successful runs

MiR100 38% 7% 100%
Hircus 33% 33% 40%

4.3 Test C: Obstacle of complex geometry
This test environment is identical to the test presented
in subsection 4.2, with the only exception being
the geometry of the obstacles. In this test the two
robots will encounter at least 4 corners for every
obstacle. This increase in obstacle complexity provides
more information to base the decisions on, and sets
greater demands for the sensor representation of the
surroundings. This environment is illustrated in Figure 7

Fig. 7 Illustration of the test setup for Test C.

After running the test 10 times for both the Hircus and
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MiR100, the paths were mapped as seen in Figure 8 and
the parameters were calculated as seen in Table III.

Fig. 8 The recorded path of the Hircus (purple) and MiR100
(blue), with collisions marked red.

From the traversed paths and the measured parameters,
it can be concluded that the Hircus has less collisions in
this environment. The collisions only happen at corners
in this test, which potentially could be neglected by
further tuning of the algorithm.
Tab. III Average deviations from the test. The "Time
deviation" and "Distance deviation" are averaged from the
successful runs. The "Successful runs" shows how many of
the 10 runs that were not terminated by collision.

Time deviation Distance deviation Successful runs

MiR100 38% 9% 100%
Hircus 25% 24% 70%

4.4 Test D: Dynamic obstacle avoidance
In this test, only one obstacle is present. This obstacle
is however dynamic. The motion of the obstacle is
determined upon the speed of the robot, to ensure
collision if the robot do not react upon the presence of
the obstacle. This is further specified in Figure 9, where
it can be seen that the obstacle will move in front of the
robot, when it is 1.0m away from where the centerline
passes the path of the obstacle.

Fig. 9 Illustration of the test setup for Test C.

After running the test 10 times for both the Hircus and
MiR100, the paths were mapped as seen in Figure 8 and
the parameters were calculated as seen in Table III.

Fig. 10 The recorded path of the Hircus (purple) and MiR100
(blue).

From the traversed paths and the measured parameters,
it can be concluded that the global planner of the Hircus
makes the robot traverse in a loop when the heading of
robot is more than 90◦ in positive direction of rotation.
However, no collision happens, and the deviation in time
is lower than the MiR100. These results are seen in
Table IV.
Tab. IV Average deviations from the test. The "Time
deviation" and "Distance deviation" are averaged from the
successful runs. The "Successful runs" shows how many of
the 10 runs that were not terminated by collision.

Time deviation Distance deviation Successful runs

MiR100 33% 3% 100%
Hircus 11% 11% 100%

5. Conclusion
This project aimed to investigate obstacle avoidance on
the Capra Hircus platform using fused sensor data and
the PointBug algorithm. This was done by implementing
an algorithm for fusing the ultrasonic sensor data and
radar data by utilising a particle filter. The particle
filtered data showed to represent obstacles better than
only using the raw radar or ultrasonic sensor data.
However, during testing of the entire system, it was
found that the robot would collide with corners of
the obstacles in some cases, and other times choose
unnecessary long paths. This was found to happen
because of two main shortcomings. Firstly, the lack of a
robot heading made it difficult to update the global goal
when encountering a new obstacle. Secondly, collisions
with obstacle corners occurred because of the sparse
implementation of a rolling map, which again was a
result of the missing heading. Finally, the software
and hardware were evaluated for integration into
Capra Robotics’ production. This showed that minimal
changes were needed for the hardware integration and
potential algorithm adjustments were needed for a full
software integration.
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