Evaluation of Fenton Pretreatment and MBBR Performance for Leachate Biodegradability Improvement

Introduction

Leachate Treatment challenge: Low Biodegradable organic content & high concentrations refractory hazardous substances

- Limits biological treatment
- PFAS removal: High COD [mg/L] in competition MPs (μg/L or ng/l) adsorption sites
- MUDP Project: DTI

Methodology

Fenton Oxidation: Iron (catalyst) + Hydrogen Peroxide

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + \bullet OH + OH^-$$

$$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2^{\bullet} + H^+$$

Moving Bed Biofilm Reactor (MBBR)

Oxygen Uptake Rate (OUR)

Result

- Leachates screened: High & Low COD
- Fenton conditions:

 acidic pH
 Fe^{2+:}H₂O₂ (1:5)

 30-minute Reaction Time

 24-hour MBBR experiments (With Fenton- Significant COD reductions)
 Denitrification reactors: 73% for AAR & 68% for ODE

- OUR measurements, TOC, and OX_C: already highly biodegradable
- Inhibitory Analysis: No Detectable elements Young Leachate/source
- Fenton primarily removed readily available leachate rather than converting refractory part
- MBBR showed good performance : Nitrification & Denitrification (Ammonium oxidization & COD reductions)
- Perspective: BOD measurements & Optimize Process: Denitrification Reactor

Note:

Experimental Values: Impact pH, Reaction Time & Molar ratio (Fe²⁺:H₂O₂)

Nitrification/Denitrification: ODE with Fenton

OUR: ODE

Author: Reena Bausram Mosebo