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Abstract
This paper examines how the computational load of numerical intergration over the first Brillouin zone (BZ) may
be eased by employing the semianalytic integration scheme, namely the linear analytic tetrahedron method (LATM).
Furthermore, it is examined how the integration may sometimes be reformulated to allow for faster convergence, here
shown by calculating the piezoelectric coefficients utilising density functional theory (DFT). To show the power of
the LATM calculations, the linear electronic susceptibility and the second harmonic generation (SHG) response of
primarily zinc blende crystals was computed and compared with a simple point sampling scheme. The appropriate
matrix elements and eigenvalues was calculated with the empirical pseudo potential (EMP) method. Here it was
shown that the LATM can reduce the number of k-points needed by up to two orders of magnitude for the linear
susceptibility, while similar results can be seen for the lower frequencies of the SHG response.

Keywords: Linear Analytic Tetrahedron Method, Efficient Integration Schemes, Density Functional Theory, Second
Order Harmonic Generation, Piezoelectrics

1. Introduction
With the advent of the laser in 1960 a resurgence in
the study of nonlinear response in materials occurred,
which has been ongoing to this day. Modern technology
heavily utilises nonlinear properties of materials, from
the DC-Pockels effect, used in the modulation of devices
such as LCDs and pulsed lasers, to the different types
of frequency mixing, such as SHG. These effects rely
on the nonlinear electric susceptibility of materials, and
as new materials join the roster of electronics in the
continued development of the modern world it is crucial
to map the properties these materials [1].

To determine the electric susceptibility of bulk crystals,
an integral over the first Brillouin zone (BZ) has
to be carried out. The integrand of the integral is
a quotient consisting of appropriate matrix elements,
energy differences, and the exciting frequency [2, 3, 4].
One approach to obtain these constituents is using EMP,
where known band structure properties such as the band
gap and effective mass is utilised to generate a set of
Fourier coefficients from which the band structure and
wave functions can be calculated [5]. A more robust

alternative is to employ ab initio methods such as DFT
to obtain the necessary constituents. However, because
the integrand contains numerous poles, which makes it
ill defined when tackled as a Riemann sum, hundreds of
thousands of k-points have to be used to converge the
integral, which is not at all feasible when using DFT
to get the eigenvalues and matrix elements. It is thus of
great interest to develop numerical integration methods
which improves the convergence of these BZ integrals.
One such method is the LATM, the effectiveness of
which will be examined in this paper for both linear
and second order response functions. In the case of
the piezoelectric coefficients, BZ integration can be
circumvented entirely. This is done by expressing the
problem in terms of a Berry connection, which may be
calculated along one dimension at a time.

2. Ab Initio Calculations
The corner stone of DFT is the Hohenberg Kohn
theorem, which states that there is a one to one
correspondence between a system, as described by the
potential from the nuclei, and the spatially varying
electron density of the ground state, implying that
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any observable of said system is a functional of the
electronic density. In principle, this means that the
cumbersome N × 4 dimensional wave function, with N
being the amount of electrons, which was previously
required to evaluate observables of the system may
be dispensed with in favour of the simpler three
dimensional electron density [6]. Kohn and Sham
continued the work, proposing that a system of non-
interacting electrons could produce the same electronic
density as the true interacting system, resulting in the
KS-equation[

−1

2
∇2 + VN + VH + Vxc

]
ϕi = εiϕi, (1)

where ϕi are single electron wave functions. The exact
form of the exchange correlation potential, Vxc, is
unknown, but it must depend on the electronic density
ρ(r). An initial guess on the electronic density is
therefore necessary to evaluate the potentials in eq. (1),
after which ϕi and ρ(r) can be updated. This procedure
is then repeated until convergence [7]. This method,
although precise, is computationally heavy for even
relatively small k-points.

3. Linear Analytic Tetrahedron Method
The LATM was first proposed by Jepsen and Andersen
as well as by Lehmann and Taut, in the beginning of
the 1970s [8, 9], where the method proved effective
at calculating physical properties such as the density
of states and fermi-surface. Further work was done by
D. J. Moss, J. E. Sipe, and H. M. van Driel in the
late 80s, specifically with respect to the application of
SHG response functions [10]. The method proposed by
Sipe et al. is difficult to implement with a multitude of
limiting cases, hence it is of interest to investigate to
which degree the LATM developed for linear response
functions may be employed for higher orders. Starting
with a review of the method [10, 11].

By use of both time reversal symmetry, along with point
group symmetry it is possible to reduce the BZ integrals
to only be carried out over the IBZ, and the integrals in
question will be on the form

I(ω) =

∫
ΩIBZ

A(k)δ(Ẽ − α~ω)d3k, (2)

where A(k) is some function of k, and Ẽ(k) is
an appropriate energy difference. For readability, the
energies dependence on k is suppressed. The idea of
the LATM is to subdivide the volume of integration into
tetrahedral micro cells where k and Ẽ are determined

exactly at the corners. It is then assumed that k and
Ẽ varies linearly between the corners, after which
the integral over each micro cell may be carried out
analytically. To do this the integral is rewritten as a
surface integral over surfaces of constant energy in
the BZ, making the integral independent of the shape
of the cell. Considering a surface of constant energy
for a given difference S(Ẽ) and defining a vector
perpendicular to this plane as

û⊥ =
∇kẼn

|∇kẼn|
, (3)

makes it possible to recast the volume element by
integrating over each constant Ẽn plane inside the IBZ
instead,

d3k = û⊥ · dk⊥ dS =
1

|∇kẼn|
dẼn(k)dS. (4)

Now with this result eq. (2) may for each micro cell be
written as

I(ω) =
1

ΩBZ

∑
T

∫
ε

∫
S∈T

A(k)δ(Ẽ − α~ω)×

1

|∇kẼn|
dẼ(k)dS. (5)

The response from each tetrahedron is then calculated
and added together, to get the result for the entire IBZ
zone. To this end the result from a single micro cell
has to be calculated. Each tetrahedron is defined by
its vertices, k0,k1,k2 andk3, and at each vertex the
energy and function A(k) is calculated. The tetrahedron
is usually constructed by some predefined algorithm,
such as "generateMesh" in Matlab or "Delaunay" from
the package scipy in python. The numbering of the k-
points are sorted such that

Ẽ0 ≤ Ẽ1 ≤ Ẽ2 ≤ Ẽ3, (6)

Similarly the value of the function A(ki) is also
relabelled in accordance with eq. (6). The next step is
then to linearly interpolate both A(k) and Ẽ(k) inside
the tetrahedron,

Ā(k) = A0 + bA · k′, (7)

where k′ = k − k0, and bA = [∇kA(k)]A0
[10]. The

linear interpolations may now be inserted into eq. (2),
from which it can be seen that the delta function will
be independent of S as the energy does not change for a
given plane, hence the integral over S can be considered
first

i =
1

|bẼ |

[∫
S(Ẽ)∈T

A0dS + bA

∫
S(Ẽ)∈T

k′dS

]
. (8)
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The first integral in eq. (8) is simply the area of the
constant energy surface, f , times A0, while the second
integral can be seen as the centre of gravity kcg for an
isotropic 2D medium. To calculate these properties it is
of interest to split the energy surfaces into three different
categories, namely Ẽ0 ≤ S(Ẽ) < Ẽ1 which will be
abbreviated S0, while the area Ẽ1 ≤ S(Ẽ) < Ẽ2 will be
abbreviated S2, and finally the region Ẽ2 ≤ S(Ẽ) < Ẽ3

is abbreviated S3. From fig. 1 it can be seen that S2

can be calculated as the difference between the areas
S0 and S1. To calculate the area of of the different

Fig. 1 Sketches the energy planes in each tetrahedron utilised
in deriving the LATM.

surfaces an expression for the vertices of each surface,
k

(E)
i,j , has been constructed in terms of the energy Ẽ as

well as the location of the vertices, using this the area
can be calculated as the cross product of two of the
corners i.e., f0 = 1

2

∣∣∣(k(E)
20 − k

(E)
10

)
×
(
k

(E)
30 − k

(E)
10

)∣∣∣.
By doing this it is possible to express the area in terms
of the energy difference at the vertices in the case of S0

[11]

f0 =
3ΩTE

2
0

Ẽ10Ẽ20Ẽ30

|bẼ |. (9)

The same can be done for f1 and f3

f1 =
3ΩTE

2
1

Ẽ10Ẽ21Ẽ31

|bẼ |, (10)

f3 =
3ΩTE

2
3

Ẽ30Ẽ31Ẽ32

|bẼ |. (11)

Finally f2 may be expressed as f2 = f0− f1. All these
expressions are purely defined by the vertices of the

tetrahedron, and hence only the value at these vertices
needs to be known.

The centre of gravity of a triangle can be expressed
simply from the associated vertices

kcg,j =
1

3

3∑
i=0

′
k

(E)
i,j . (12)

Thus the dot product in eq. (8) can be calculated as

bA · kcg = Aj0 +
Ej
3

3∑
i=0

′Ai,j

Ẽi,j
. (13)

With these results it is now possible to construct a
complete analytic expression for the integral over a
tetrahedron micro-cell [11]. Starting with area S0 i.e.,
Ẽ0 ≤ α~ω < Ẽ1

i0 =
ΩTE

2
0

Ẽ10Ẽ20Ẽ30

(
3A0 +

3∑
i=1

Ai,0

Ẽi,0

)
. (14)

For area S2 i.e., Ẽ1 ≤ α~ω < Ẽ2 this may be calculated
as

i2 =
ΩTE

2
0

Ẽ10Ẽ20Ẽ30

(
3A0 +

3∑
i=1

Ai,0

Ẽi,0

)

− ΩTE
2
1

Ẽ10Ẽ21Ẽ31

3A1 +

3∑
i 6=1

Ai,1

Ẽi,1

 . (15)

And lastly for S3, Ẽ2 ≤ α~ω ≤ Ẽ3 the integral yields

i3 =
ΩTE

2
3

Ẽ30Ẽ31Ẽ32

3A3 +
3∑
i6=0

Ai,3

Ẽi,3

 . (16)

Lastly two cases has to be considered, namely α~ω <
Ẽ0 and Ẽ3 < α~ω. In these cases the energy surface
will be completely outside the tetrahedron, and hence
the surface area inside is zero, thus there will be
no contributions from these areas. To complete the
integration, the last integral over the different energies
has to be carried out

I(ω) =

∫
(i0 + i2 + i3)δ(Ẽ − α~ω)dẼ. (17)

However, due to the delta function this intergration
simply amounts to inserting α~ω into the Ej expression
as Ej = α~ω − Ẽj . This has already been done
when the different energy cases were outlined to ease
the readability. The expressions in eq. (14), eq. (15),
and eq. (16) is also completely independent of the
tetrahedral structure and hence very easy to implement,
and throughout this project it will be shown that the
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implementation of this procedure will significantly help
with the convergence of IBZ integrals by reducing the
number of sampling points needed which is of great
interest in DFT calculations as large point grids are
unfeasible.

4. Methodology
Before testing the effectiveness and reliability of the
LATM a brief overview of the methodology used in this
paper will be presented here. As stated in section 3 the
integrals of interest is on the form of eq. (2). Integrals
like these appear when the imaginary part is extracted.
This also means that the property calculated in this paper
will be the imaginary part of the electric susceptibility.
The real part may then be calculated through the
Kramers-Kronig relations, thus an integration for the
real part of the response function may be omitted which
eases the calculation. Additionally the LATM for the
real part of the response function is not independent
of the tetrahedral geometries, which would significantly
complicate the implementation [11].

All LATM calculations will be compared with EMP
point sampling calculations with the form factors for
wurtzite GaN taken from Dielectric Properties of
Wurtzite and Zincblende Structure Gallium Nitride and
the zinc blende form factors taken from Band structures
and pseudopotential form factors for fourteen semi-
conductors of the diamond and zinc-blende structures
[5, 12]. For the wurtzite calculations a basis set of 197
G-vectors were used, while for zinc blende a basis set
of 65 were used. DFT and EMP is used to get the
matrix elements and eigenvalues of the linear response,
while the nonlinear response only applies EMP. The
calculation parameters for the DFT calculation can be
seen in table I.

# k Mode XC FD width PW
n3
k = 1000 PAW PBE [13] 0.01 600

Tab. I The settings which are constant for all DFT calcula-
tions of the linear susceptibility.

The focus of the SHG calculations is to test the
reliability of the LATM when the A(k) function is
poorly behaved. To avoid numerical errors caused by
the placement of k, the same k-point grid will be used
for both the LATM and the point sampling calculations.

To quantify how quickly the calculations converges
eq. (18) is used, which gives a total change in percent

between two Im{χ(ω)},

∆% =
∑
ω

| Im{χ(#ki)}|−| Im{χ(#ki+1)}|
| Im{χ(#ki+1)}| × 100. (18)

5. Linear Susceptibility with LATM and EMP
By means of time-dependent perturbation theory, the
imaginary part of the susceptibility can be given as [14]

Im
{
χ(1)(ω)

}
=

e2

4π2m2ε0ω2
×∑

c,v

∫
k

|P jcv|2δ(Ecv(k)− ~ω)dk, (19)

with ω being the angular frequency of the perturbing
light source, Ecv(k) = Ec(k) − Ev(k), and |P (j)

cv |2 =
| 〈ϕc,k| p̂j |ϕv,k〉 |2. The summation index v runs over
the occupied bands, while c runs over the unoccupied
and is truncated at some desired number, that being
20 for this paper. Because wurtzite is birefringent and
symmetry operations were used to reduce the integration
domain it is necessary to average the P xc,v and P yc,v
matrix elements over the IBZ to get the correct ordinary
susceptibility [5]. To validate the result of the LATM, an
EMP calculation using the LATM and point sampling is
carried out for GaAs, GaN and InSb in the zinc blende
lattice using #k = 5924, which can be seen in fig. 2.
It is readily observed the LATM and point sampling
achieves the same result.

Fig. 2 Linear response of GaAs, GaP, and InSb using #k =
5924 with point sampling and LATM utilising EMP.

It is now of interest to apply the LATM to calculations
based on DFT to see if the results can be converged
for few #k relative to what is required using point
sampling and EMP. Figure 3 shows Im

{
χ(1)(ω)

}
for
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wurtzite GaN using #k = 98758, and the change in
% for increasing #k. For #k > 14000 the difference
between two graphs is below 2 % but it can be seen that
even at #k > 50000 there is still a change between two
points meaning the method converges slowly.

Fig. 3 Linear response of GaN using #k = 98758 using
point sampling. The insert shows the convergence of the linear
response using point sampling.

In fig. 4 a similar calculation has been done using DFT
along with the LATM method. When using DFT a self-
consistent routine is performed, using both point group
symmetry, and time reversal symmetry, with #k = 103.
Afterwards the electron density is kept fixed and the
wave functions and eigenvalues are found using a new
k-grid. In fig. 3 the response has been calculated using
#k = 2275 which produces a graph of slightly inferior
smoothness compared to fig. 3. The inserts in fig. 4
shows the convergence and from this it can be seen that
for N = 13 the relative error is below 5% which is well
below the points needed to converge the point sampling
method. It is thus readily demonstrated that for the linear
response the LATM converges faster than the sampling
method, reducing the necessary k-points by two orders
of magnitude.

6. Nonlinear Susceptibility with LATM and EMP
In the previous section it was shown that the LATM is
very effective at reducing the number of k-points needed
to achieve convergence of the linear susceptibility. It is
now of interest to apply the method to the nonlinear
response, which in this paper is SHG. SHG can be
understood using the dipole approximation, where it is
assumed that the wavelength of light is much larger

Fig. 4 Linear response for GaN with #k = 2275 using
LATM. The insert shows the convergence of the linear
response using LATM.

than the atoms, and hence the spacial variations in the
electric field can be ignored. The electric field may then
be approximated as [2]

E =
∑
b,ω

Eb(ω)e−iωtb̂, (20)

where Ea(ω) denotes the field strength for a field with
frequency ω, and b̂ denotes the direction. The response
from the system will be an induced polarisation, which
in linear electromagnetic theory is proportional to the
electric field with the proportionality factor χ. In
nonlinear electromagnetism this factor is instead a series
of factors, χ(1), χ(2), χ(3)... with each describing the
response from a field of that order. χ(1) is a second rank
tensor while χ(2) is a third rank tensor and so forth [15].
In the case of SHG it is χ(2) that is of interest. Given
two perturbing fields, the second order contribution to
the polarisation is expressed as [2]

P
(2)
a = ε0

∑
ω1,ω2

∑
b,c χ

(2)
a,b,cEb(ω1)Ec(ω2)e−i(ω1+ω2)t. (21)

SHG is then the special case where the two applied
frequencies are identical ω1 = ω2 = ω. In the length
gauge, the dipole operator is normally split into two
parts, namely an inter- and intraband part [16, 3, 2, 17].
This leads to four terms, namely a purely interband,
a purely intraband, and two mixed terms. For a cold
intrinsic semiconductor the intraband and one of the
mixed terms disappear. The purely interband response
may be seen as the transition of electrons between
different bands due to the absorption of either one or
two photons. The surviving mixed term results in a
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modulation of the linear susceptibility due to intraband
movement of the electrons [4]. To test the LATM
only the purely inter-band response will be considered,
which in the velocity gauge, when symmetrised over
polarisation indices, may be calculated as

χ
(2i)
α,β,γ(−2ω;ω, ω) =

ie3

(2π)3ε0~2m3ω3
×

∑
nml

′
∫ 〈

p
(α)
nmkp

(β)
mlkp

(γ)
lnk

〉
ωmnk − 2ω

×(
fnl

ωlnk − ω
+

fml
ωmlk − ω

)
d3k. (22)

It is possible to extract the imaginary part to make the
integral like the one in eq. (2) as [18]

Im
{
χ

(2i)
α,β,γ

}
= − πe3

(2π)3ε0m3~2ω3
×∫ ∑

v,c

{
Π

(ω)
α,β,γδ(ωcv − ω)

+ Π
(2ω)
α,β,γδ(ωcv − 2ω)

}
d3k, (23)

with

Π
(w)
α,β,γ =

∑
l

(
Im
{〈
p(α)
vc p

(β)
cl p

(γ)
lv

〉}
× ωcl − ωlv

(ωcv + ωcl)(ωcv + ωlv)

)
, (24)

Π
(2w)
α,β,γ =

∑
l

Im
{〈
p(α)
vc p

(β)
cl p

(γ)
lv

〉} 2

ωcl − ωlv
. (25)

Here, c denotes conduction bands, v denotes valence
bands, and l is any given band. By comparison with
eq. (2), Π

(α′ω)
α,β,γ would then correspond to A(k), hence

these will be linearly interpolated between each of the
vertices of the tetrahedron. This linear interpolation was
shown to yield great results for the linear susceptibility,
however, the function that were interpolated in that case
was the matrix elements which is known to vary slowly
and contain no poles. This is not the case for the second
order susceptibility, as both Π

(ω)
α,β,γ and Π

(2ω)
α,β,γ have

denominators that may yield zero, which means that
the linear approximation is obviously bad. However the
pole may still be averted by the delta function, hence
only a problem is expected when both the denominator
and delta function encounters a resonance. This is a
so-called double resonance which is hard to handle
numerically, but it can be alleviated by adding a small

broadening in both denominators. The result is that
Im
{
χ

(2i)
x,y,z

}
will become complex in the calculations,

where the real part represents the actual Im
{
χ

(2i)
x,y,z

}
and the imaginary part of Im

{
χ

(2i)
x,y,z

}
have no physical

meaning.

Because EMP is utilised both for LATM and point
sampling, the results may be compared one to one,
which is done in fig. 5 for GaN using #k = 5910.
The form and values are generally similar, though the
numerical methods used to handle the delta functions
with point sampling inhibits its graph from spiking as
high as that of LATM.

Fig. 5 Im
{
χ

(2i)
x,y,z

}
using #k = 5910 with LATM and point

sampling. The insert shows the tetrahedron mesh of the IBZ.

Testing the convergence of the methods eq. (18) is
used, where the results for LATM is seen in fig. 6
with the insert being Im

{
χ

(2i)
x,y,z

}
for GaN using #k =

5745, 5775 and 5910. It is clear that no appreciative
convergence is taking place, with GaN being the
most egregious. Slightly inferior, yet similar results are
obtained when point sampling is employed, not shown
here. The insert does however reveal that the three
graphs are close to identical up until ∼ 5.2 eV.

It is hypothesised that the divergence taking place at
high energies are caused by the double resonance. To
test this, the real and imaginary part of Im

{
χ

(2i)
x,y,z

}
is

plotted in fig. 7 as the imaginary part is only appreciably
different from zero when double resonances are present.
It is clear that this correspondence is found, as the real
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Fig. 6 Convergence of the LATM for various zinc blende
semiconductors. The insert shows Im

{
χ

(2i)
x,y,z

}
using LATM.

part of Im
{
χ

(2i)
x,y,z

}
for GaN becomes unstable at the

same energies that the imaginary part of Im
{
χ

(2i)
x,y,z

}
becomes nonzero.

Fig. 7 Plots the real and imaginary part of Im
{
χ

(2i)
x,y,z

}
using

LATM and #k = 5745, 5775 and 5910.

Similar results are found for all materials tested
here, with the trend being that nonlinear response for
materials with larger band gaps are stable for higher
energies. Ignoring Im

{
χ

(2i)
x,y,z

}
for energies above

which the response of each materials becomes unstable,
the convergence using eq. (18) is plotted in fig. 8 using
LATM, where the insert shows Im

{
χ

(2i)
x,y,z

}
for all five

materials using LATM with #k = 5924. It is seen that

the graphs are nicely converged, and that Im
{
χ

(2i)
x,y,z

}
is smooth for all materials.

Fig. 8 Convergence of Im
{
χ

(2i)
x,y,z

}
using LATM with the

unstable energy range removed from each material. The insert
plots Im

{
χ

(2i)
x,y,z

}
using LATM and #k = 5924.

To demonstrate the strength of LATM Im
{
χ

(2i)
x,y,z

}
is

plotted in fig. 9 for InSb using both LATM and point
sampling with #k = 168, 776, and 1890. Here LATM is
convincing, especially at low energies, while the point
sampling method is far from converged.

It has been shown that the LATM provides a strong
tool for carrying out IBZ integration. It is very
robust for linear response functions and may easily be
implemented to reduce the number of k-points needed to
converge a result. For the second order response it was
hypothesised that the double resonance did not allow
for convincing convergence graphs, but the method was
stable in the low frequency range. Hence if it is the low
frequency range that is of interest LATM has proven to
be reliable. In the high frequency range, the method does
not converge, but it is more stable than point sampling
and may thus prove a useful tool.

7. Piezoelectric Coefficients
The study of piezo electric effects are of great interest
in the context of III-V nitride semiconductors, as these
show a large piezoelectric response, up to an order
of magnitude larger than other III-V semiconductors
[19, 20, 21]. As the electric field resulting from strain
can significantly alter the electronic and optical effects
of the device [22], it is of interest to understand the
piezoelectric response, which will be done here for
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Fig. 9 Plots Im
{
χ

(2i)
x,y,z

}
of InSb using point sampling and

LATM with #k = 168, 776 and 1890.

GaN in the wurtzite configuration. The piezoelectric
coefficients are generally given by

γi,j =
∂Pi
∂εj

, (26)

where Voigt notation is used. This then relates the
change in polarisation to the change in strain, which
yield a filled third rank tensor. However, due to wurtzite
being a part of space group p63mc the only 3 unique,
non-vanishing terms are γ3,1 = γ3,2, γ3,3, and γ1,5 =
γ2,4 [19]. To calculate the piezoelectric coefficient γ3,3

one can consider a small applied strain, ε3, which would
induce a polarisation along the c-axis described by

δP3 = γ3,3ε3. (27)

To find the coefficient the polarisation is expanded to the
first order in the lattice and internal parameter [22, 23]

δP3 =
∂P3

∂c
(c− c0) +

∂P3

∂u
(u− u0). (28)

The change in the lattice parameter c may be related to
the strain along the c-axis as

c = c0(1 + ε3), (29)

from which it follows that ∂ε3
∂c = 1

c0
. Additionally, the

internal parameter is expressed as a function of the
strain and then Taylor expanded around ε3 = 0, giving
u(ε3) = u(0) + ∂u

∂ε3
(ε3−0). Inserting these expressions

in eq. (28) and equating with eq. (27) the piezoelectric
coefficient can be expressed as

γ3,3 =
∂P3

∂ε3
+
∂P3

∂u

∂u

∂ε3

∣∣∣∣∣
u0

. (30)

Similar expressions can be made for the other coeffi-
cients using the same method, yielding the following
equations

γ3,1 =
∂P3

∂ε1
+
∂P3

∂u

∂u

∂ε1

∣∣∣∣∣
u0

, (31)

γ1,5 =
∂P1

∂ε5
+
∂P1

∂u

∂u

∂ε5

∣∣∣∣∣
u0

. (32)

Here the first term in each equation is referred to
as the clamped ion term, γ

(0)
i,j , which details the

polarisation response when the lattice parameters are
fixed at their equilibrium values, while the second term
is related to relaxation of the internal parameter. Both
the polarisation and the internal parameter has a linear
response for small strains, and hence the derivatives in
eq. (30) through eq. (32) can easily be tackled through
a finite difference approximation, if the polarisation as
a function of strain can be calculated, up to modulus
eT/Vcell, with T being a translational lattice vector
[24, 25]. The polarisation can be understood through
an ionic and electronic contribution. The ionic term
represents the movement of the atomic cores in relation
to their equilibrium positions, and is given by

PIon =
e

Vcell

∑
µ

Zµ τµ. (33)

The electronic contribution can qualitatively be under-
stood as the displacement of the electrons as a response
to the displacement of the ions, which may be viewed
as a current flowing in the crystal [26]. The total change
to the polarisation can be found by integrating this
current. Rather than working with adiabatic currents, the
problem is restated in terms of some unitless perturba-
tion λ which varies between 0 and 1, with the former
corresponding to the initial state of the system and the
latter being the final state,

∆P =

∫ ∆t

0

Jdt =

∫ 1

0

∂P

∂λ

dλ

dt
dt

= P(λ1)−P(λ0). (34)

The goal then, is to derive an expression for ∂P
∂λ .

The polarisation is the dipole moment per volume,
whose operator is −er

Ω . The issue here is that the
position operator in the overlap integrals are ill defined.
Therefore, the problem is recast in the form of the
Berry phase, as it is done in "Berry Phases in
Electronic Structure Theory" by David Vanderbilt [26].
The electronic contribution, can be shown to be related
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XC ∂P3
∂u

γ
(0)
3,1 γ

(0)
3,3 γ

(0)
1,5

∂u
∂ε1

∂u
∂ε3

∂u
∂ε5

γ3,1 γ3,3 γ1,5
LDA -8.95 0.43 -0.87 0.48 0.09 -0.18 0.00 -0.40 0.73 0.48
PBE -9.03 0.43 -0.88 0.48 0.10 -0.19 0.00 -0.48 0.88 0.48

LDA[23] - 0.45 -0.84 - - -0.16 - -0.49 0.73 -
LDA[22] - - - - - - - -0.44 0.86 0.30†

Tab. II †: Experimental results

to the Berry phase, and the total polarisation can then
be calculated as [26, 27]

Ptot =
e

Vcell

∑
µ

Zµτµ −
∑
j

φ̄j
2π

aj

 . (35)

Here, φ̄ is the average Berry phase for a plane
perpendicular to a set of sufficiently dense strings of k-
points in the IBZ and aj is the corresponding direction
of the lattice vector. The Berry phase calculation follows
the method outlined by Kingsmith and Vanderbilt in
their seminal paper, taking the form [24, 26]

φ = −Im

ln

∏N−1
i=0 det



〈
u1,ki

∣∣u1,ki+1

〉
. . .

〈
u1,ki

∣∣uM,ki+1

〉
...

. . .
...〈

uM,ki

∣∣u1,ki+1

〉
. . .

〈
uM,ki

∣∣uM,ki+1

〉



 . (36)

Here 〈um,k|un,k〉 is the overlap of the cell periodic
part of the wave function between band m and n. The
resulting matrix of eq. (36) will be of size (M ×M),
with M being the number of occupied bands. The N
k-points in question has to be on a parallel string
through the first BZ, where special care has to be
taken for the kN point to preserve the periodicity
of the BZ. In practice, this amounts to ensuring that
the phase difference between the first and the last k-
point is exactly the phase aquired when transversing
the unit cell, |un,kN

〉 = e−ibj ·r |un,k0
〉, with bj

being a reciprocal lattice vector corresponding to the
polarisation direction in question. From this the average
Berry phase is calculated. From eq. (36) it is clear that
the polarisation is quantised as the logarithm only yields
a definite answer mod 2π. Due to this fact further care
has to be taken to wrap the answer onto a choice of
branch, here that branch is −π ≤ φ̄j ≤ π.

Continuing with calculating the derivatives in eq. (30),
eq. (31), and eq. (32). The clamped ion term can be
calculated by a finite difference approximation, where
the internal parameter is kept constant. To do this, the
wave functions has to be known for strings of k-points in
the first BZ. For this paper, this was done by expanding
the wave function using the augmented plane wave
method, with a cut-off of 800 eV and using a (4×4×4)
Monkhorst-Pack grid for the self-consistent calculation.
For the exchange correlation term both the Perdew

Wang local density approximation (LDA) and Perdew-
Burke-Ernzerhof (PBE) method was used as the LDA
can more readily be compared with existing literature,
while PBE is considered more accurate [13, 28]. For the
final calculation the wave functions are further expanded
on a (10 × 10 × 10) Monkhorst-pack grid keeping the
electronic density fixed. The change in polarisation due
to the change in internal parameter has been calculated
using the same parameters, with the exception of the
dependence of the internal parameter on the applied
strain, where it was necessary to use a plane wave
energy cutoff of 1600 eV. This derivative has been
calculated by following the method outlined in [29].
Thus the strain in question is varied between ±1%,
and for each instance of strain the internal parameter is
varied by ±0.01 and the total energy is then calculated.
A fourth degree polynomial is then fitted to the total
energies and from this the optimal value of the u-
parameter can easily be found. The results of the
calculations are gathered in the two upper rows in
table II, while the two lower rows are values found
in the literature. It is clear that values are in excellent
agreement with those found in the literature, both when
the LDA and PBE exhange correlation approximation
is utilised. It has thus been shown that DFT can
be utilised to compute nonlinear properties of three
dimensional materials without sacrificing accuracy due
to its computational intensity.

8. Conclusion
In this paper it has been demonstrated to which degree
LATM may be applied to both the linear and second
order electronic susceptibility. The LATM was initially
applied to the linear susceptibility where it was seen
that it could reduce the number of k-points needed
by two orders of magnitude, and can hence be used
to alleviate the computational load of expensive DFT
calculations. The method was then applied to various
zinc blende crystals to calculate their SHG response,
where it was shown that the method could replicate the
result obtained with a simple point sampling scheme.
However, numerical noise proved to hinder the same
degree of convergence as was the case for the linear
susceptibility especially pronounced for the high band
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gap semiconductors. It was theorised that this noise
originates from double resonances found in the response
function at high frequencies, and it was shown that for
low frequencies the results did indeed converge. Hence
the LATM may readily be employed to calculate the
second order optical response, however, care has to be
taken, if fine features in the spectrum at high frequencies
are desired. Lastly the piezoelectric properties of GaN
was calculated using an approach that circumvents the
computationally expensive integrals over the BZ, and
the calculations could therefore be performed using
DFT. The obtained results was in good agreement with
those found in the literature.

Acknowledgement
The authors of this work gratefully acknowledge
Grundfos for sponsoring the 8th MechMan symposium.
All DFT calculations was carried out utilising GPAW,
which is an open source python library, implementing
the PAW method to solve the kohnsham equation, which
is available at GPAWs website [30, 31]. GPAW utilises
the ASE library for atomic simulations and molecular
dynamics and hence this libary has also been used, it
may be found on ASEs website [32] .

References
[1] G. New, Introduction to Nonlinear Optics. Cambridge University

Press, 2011.
[2] A. Taghizadeh, K. S. Thygesen, and T. G. Pedersen,

“Two-dimensional materials with giant optical nonlinearities near the
theoretical upper limit,” ACS Nano, vol. 15, no. 4, pp. 7155–7167,
2021.

[3] T. G. Pedersen, “Electric, Optical and Magnetic Properties of
Nanostructures,” 2020.

[4] J. E. Sipe and E. Ghahramani, “Nonlinear optical response of
semiconductors in the independent-particle approximation,” Phys.
Rev. B, vol. 48, pp. 11705–11722, Oct 1993.

[5] R. Wang, P. Ruden, J. Kolnik, I. Oguzman, and K. Brennan,
“Dielectric properties of wurtzite and zincblende structure gallium
nitride,” Journal of Physics and Chemistry of Solids, vol. 58, no. 6,
pp. 913 – 918, 1997.

[6] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical
review, vol. 136, no. 3B, p. B864, 1964.

[7] W. Kohn and L. J. Sham, “Self-consistent equations including
exchange and correlation effects,” Phys. Rev., vol. 140,
pp. A1133–A1138, Nov. 1965.

[8] O. Jepson and O. Anderson, “The electronic structure of h.c.p.
ytterbium,” Solid State Communications, vol. 9, no. 20,
pp. 1763–1767, 1971.

[9] G. Lehmann and M. Taut, “On the numerical calculation of the
density of states and related properties,” physica status solidi (b),
vol. 54, no. 2, pp. 469–477, 1972.

[10] D. J. Moss, J. E. Sipe, and H. M. van Driel, “Application of the
linear-analytic tetrahedra method of zone integration to nonlinear
response functions,” Phys. Rev. B, vol. 36, pp. 1153–1158, Jul 1987.

[11] V. Eyert, The Augmented Spherical Wave Method: A Comprehensive
Treatment, vol. 849 of Lecture Notes in Physics. Berlin, Heidelberg:
Springer Berlin / Heidelberg, 2012.

[12] M. L. Cohen and T. Bergstresser, “Band structures and
pseudopotential form factors for fourteen semiconductors of the
diamond and zinc-blende structures,” Physical review, vol. 141, no. 2,
pp. 789–796, 1966.

[13] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient
approximation made simple,” Phys. Rev. Lett., vol. 77,
pp. 3865–3868, Oct 1996.

[14] M. Trolle, “Microscopic theory of linear and nonlinear optical
response: zinc-blende semiconductors,” 2011.

[15] Robert W. Boyd, Nonlinear Optics. Elsevier Science & Technology,
3rd ed., 2008.

[16] E. Blount, “Formalisms of band theory,” in Solid State Physics
(F. Seitz and D. Turnbull, eds.), vol. 13, (New York), pp. 305–373,
Academic Press, 1962.

[17] C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of
semiconductors: Results with a length-gauge analysis,” Phys. Rev. B,
vol. 52, pp. 14636–14645, Nov 1995.

[18] T. G. Pedersen and K. Pedersen, “Systematic tight-binding study of
optical second-harmonic generation in carbon nanotubes,” Phys. Rev.
B, vol. 79, p. 035422, Jan 2009.

[19] H. Morkoç, “Handbook of nitride semiconductors and devices:
Electronic and optical processes in nitrides,” Handbook of Nitride
Semiconductors and Devices: Electronic and Optical Processes in
Nitrides, vol. 2, pp. 1–846, 08 2009.

[20] A. Beya-Wakata, P.-Y. Prodhomme, and G. Bester, “First- and
second-order piezoelectricity in iii-v semiconductors,” Phys. Rev. B,
vol. 84, p. 195207, Nov 2011.

[21] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous
polarization and piezoelectric constants of iii-v nitrides,” Phys. Rev.
B, vol. 56, pp. R10024–R10027, Oct 1997.

[22] H. Morkoç, Handbook of nitride semiconductors and devices. Vol. 1,
Materials properties, physics and growth. Handbook of Nitride
Semiconductors and Devices (VCH), Weinheim: Wiley-VCH, 2009.

[23] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous
polarization and piezoelectric constants of iii-v nitrides,” Physical
review. B, Condensed matter, vol. 56, no. 16, pp. R10024–R10027,
1997.

[24] R. D. King-Smith and D. Vanderbilt, “Theory of polarization of
crystalline solids,” Physical review. B, Condensed matter, vol. 47,
no. 3, pp. 1651–1654, 1993.

[25] R. Resta, “Theory of the electric polarization in crystals,”
Ferroelectrics, vol. 136, no. 1, pp. 51–55, 1992.

[26] D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric
Polarization, Orbital Magnetization and Topological Insulators.
Cambridge University Press, 2018.

[27] K. M. Rabe, C. H. Ahn, J.-M. Triscone, and K. Rabe,
Physics of Ferroelectrics: A Modern Perspective, vol. 105 of Topics
in applied physics. Berlin, Heidelberg: Springer Berlin / Heidelberg,
2007.

[28] J. P. Perdew and Y. Wang, “Accurate and simple analytic
representation of the electron-gas correlation energy,” Phys. Rev. B,
vol. 45, pp. 13244–13249, Jun 1992.

[29] A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, “Ab initio
study of piezoelectricity and spontaneous polarization in zno,” Phys.
Rev. B, vol. 50, pp. 10715–10721, Oct 1994.

[30] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid
implementation of the projector augmented wave method,” Phys. Rev.
B, vol. 71, no. 3, p. 035109, 2005.

[31] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak,
L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen,
H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara,
M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen,
V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A.
Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. H.
Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala,
J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure
calculations with GPAW: a real-space implementation of the projector
augmented-wave method,” J. Phys.: Condens. Matter, vol. 22, no. 25,
p. 253202, 2010.

[32] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer,
C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode,
J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard,
J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson,
C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen,
T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen,
“The atomic simulation environment - a python library for working
with atoms,” Journal of Physics: Condensed Matter, vol. 29, no. 27,
p. 273002, 2017.

10

https://wiki.fysik.dtu.dk/gpaw/
https://wiki.fysik.dtu.dk/ase/

	Introduction
	Ab Initio Calculations
	Linear Analytic Tetrahedron Method
	Methodology
	Linear Susceptibility with LATM and EMP
	Nonlinear Susceptibility with LATM and EMP
	Piezoelectric Coefficients
	Conclusion

