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Abstract

This project concerns the development of cascade speed- and current control of a magnetically geared permanent
magnet synchronous motor (PMSM) winch drive, to be used for an industrial hoisting system. The dynamic model of
the winch drive is developed as both a rigid system and another including the torsional spring effect of the magnetic
gear. A cascade controller was designed for the linearized rigid system and tested in simulations on both the rigid
and torsional spring system. It was found that the designed controller could sufficiently control the spring system on
speed ramps and load steps, eliminating the steady state error and ensuring negligible overshoot.
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Nomenclature
The subscript k in the following list indicates the phases
A, B, and C.

uk Voltage [V ]
ik Current [A]
Rs Coil resistance [Ω]
Lk Inductance [H]
εk Back- emf voltage [V ]
Lm Mutual inductance [H]
ψk Magnetic flux linkage [Wb]
ψpm(k) Magnetic flux from the permanent magnets

[Wb]
ψL(k) Magnetic flux contribution form phase k to

the remaining phases [Wb]
εkm Flux contribution of surrounding phases to

phase k [V ]
εkpm Back-emf contribution of permanent magnets

to phase k [V ]
λpm Amplitude of permanent magnet flux linkage

[V s/Hz]
θe Electrical angle [rad]
Pk Power [W ]
Pin Input power to the motor [W ]
G Magnetic gear gearing ration [-]
Gp Pulley gearing [-]
ppHSR Number of HSR pole pairs [-]
ppLSR Number of LSR pole pairs [-]

p Number of poles [-]
θHSR Angular position of HSR [rad]
θLSR Angular position of LSR [rad]
JHSR HSR mass moment of inertia [kg m2]
JLSR LSR mass moment of inertia [kg m2]
BHSR HSR viscous damping coefficient [Nms]
BLSR LSR viscous damping coefficient [Nms]
τe Electrical torque of the motor [Nm]
τL Torque produced by the load [Nm]

1. Introduction
The aim of this paper is to investigate the effect of the
torsional spring effect that exists in a coaxial magnetic
gear, in comparison to the same coaxial gear considered
as a rigid system. The high-speed rotor (HSR) of the
magnetic gear is the driving shaft, and is powered by
a permanent magnet synchronous motor (PMSM). The
low-speed rotor side of the gear (LSR) is the output
shaft, and is joined with a winch drum, allowing the
spooling of wire as part of a hoisting system. The
wire is further put through a pulley at the hook of the
hoisting system, providing another gearing ratio of two.
The goal of using the PMSM and magnetic gear drive
combination is to gain knowledge of how the motion of
the system is affected when the torsional spring effect
of the gear is included.

Due to the physical system not being assembled at
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the time of writing this paper, no experiments on the
physical system have been performed. Instead, the non-
linear simulation model serves as the subject for the
controller implementation and experiment setup.

2. Electrical model of the PMSM
The three phases of the permanent magnet synchronous
motor are connected in a star configuration as can be
seen on the figure below:

Fig. 1 A figure showing the star connection configuration of
the PMSM.

Seen on the figure are LA, LB and LC which are the
phase inductances, RS which is the phase resistance,
εA, εB and εC which are the phase back electromotive
forces and IA, IB and IC which are the phase currents.
For this paper, the phase inductances and resistances are
assumed to be equal. With Kirchhoff’s voltage law [2],
the voltage in each phase can be expressed as:

uk = Lk
dik
dt

+Rsik + εk (1)

Using Faraday’s law [3], the back electromotive forces
can be expressed as a change of magnetic flux crossing
the conductor. Since this is a three-phase PMSM, the
electromotive force depends on the flux contribution
from the surrounding phases [1]:

εA =
dψA
dt

=
d

dt
(ψLB

+ ψLC
+ ψpmA

) (2)

The electromotive force can be separated into the flux
contribution of the surrounding phases and the flux
contribution form the permanent magnets [1]:

εk = ekm + ekpm (3)

Where εk is the flux contribution from the surrounding
phases, which for phase A would be:

eAm = Lm

(
diB
dt

+
diC
dt

)
(4)

Where Lm is the mutual inductance. Using Kirchhoff’s
law again, this can be rewritten as:

eAm = −Lm
diA
dt

(5)

The flux contributions from the permanent magnets
from Equation 3 can be described as [1]:

dψpmA

dt
= λpm

dγA
dt

(6)

Where λpm is the amplitude of the flux linkage [4], and
γk is the factor dependent on the phase and the angle
of the electrical rotation θe, which can be expressed for
each of the phases as [1]:

γA = cos(θe) (7)

γB = cos

(
θe −

2π

3

)
(8)

γC = cos

(
θe −

4π

3

)
(9)

Inserting Equation 5 and 6 into Equation 1, and
rearranging by combining inductances, the final voltage
equation is obtained:

uk = (Lk−Lm)
di

dt
+Rsik+λpm

dγk
dt

with k ∈ {A,B,C}
(10)

2.1 Electromechanical torque
The next step is to relate the current i and the electrical
torque τe, which is done here using the input power of
the system which can be determined as [1]:

Pin = PA + PB + PC (11)

Pin = uAiA + uBiB + uCiC (12)
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This equation uses information from the three phases in
order to calculate the power. Using the Clark and Park
transformations, it is possible transform from the three
phases A, B and C into the d, q coordinate system for
both the voltage Equation 10 and the power Equation 12
[1]:

Voltage equation in d, q:

ud = Rsid + L
did
dt
− θ̇eLiq (13)

uq = Rsiq + L
diq
dt

+ θ̇e(Lid + λpm) (14)

Power equation in d, q:

Pin =
3

2
(udid + uqiq) (15)

Substituting the voltage equations into the power
equation and rearranging, it is possible to obtain the
following equation:

Pem = τeθ̇m =
3

2
(θ̇eλpmiq) (16)

In order to obtain an equation for the electrical torque
τe, the electrical angular velocity is transformed into
mechanical angular velocity using the number of poles
in the motor as seen below:

θ̇e = θ̇m
p

2
(17)

and thereby yielding:

τe =
3p

4
λpmiq (18)

The current equations id and iq can be found from the
voltage Equation 13 and 14 as can be seen below:

id:
did
dt

=
ud −Rsid + θ̇eLiq

L
(19)

iq:
diq
dt

=
uq −Rsiq + θ̇eLid − θ̇eλpm

L
(20)

With these three final non-linear equations 18, 19 and
20, it is possible to build the non-linear electrical model
of the PMSM motor.

2.2 Linearisation and Laplace of the PMSM electri-
cal model
To build the linear model of the PMSM motor, these
equations have to be linearised and Laplace transformed.
To do this, for the current equations, the cross-coupling
from iq in Equation 19, and from id in Equation 20 is
neglected. This is because it is assumed that the cross-
coupling effect is negligible, and the controller is to be
designed such that the current id is zero to maximize
the torque. The electrical torque however, is already a
linear expression. With this in mind, the linearisation
and Laplace is performed and the following transfer
functions are obtained:

τe:
τe
iq

=
3p

4
λpm (21)

id:
id(s)

ud(s)
=

1

sL+Rs
(22)

iq:

iq(s)

uq(s)
=

1

sL+Rs
− θ̇m(s)

uq(s)

pλpm
2(sL+Rs)

(23)

3. Rigid mechanical model
In order to derive the equations of motion for the
mechanical model of the winch drive, a figure is made
which shows how the system is to be modelled:

Fig. 2 A figure showing the magnetic gear winch drive
configuration from which equations of motion is derived

The two cylindrical bodies JHSR and JLSR is the HSR
and the LSR parts of the magnetic gear respectively.
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There is a gearing of 1 : G between the two bodies
and a torsional spring between the gear and the LSR.
The mechanical system of the winch drive is in this
section considered as a rigid system, where the torsional
spring is assumed to be infinitely stiff. A pulley gear
with ratio 1 : Gp is also added between the LSR and
the load where the cable is also assumed infinitely stiff.
An equation of motion is made for this one degree of
freedom system with newtons second law:

(
JHSR +

JLSR

G2

)
θ̈HSR =

τe −
(
BHSR +

BLSR

G2

)
θ̇HSR − τL (24)

With the load torque referred to the HSR, stated as the
static and dynamic loads, with the latter resulting from
the HSR angular acceleration:

τL =
Mgr

GpG
+

Mr2

G2
pG

2
θ̈HSR (25)

Collecting the equivalent loading from the HSR accel-
eration to the left-hand side, the equivalent system mass
moment of inertia is expressed:

(
JHSR +

JLSR + JWD(θLSR)

G2
+
Mr(θLSR)2

G2
pG

2

)
θ̈HSR

= τe −
(
BHSR +

BLSR

G2

)
θ̇HSR −

Mgr(θLSR)

GpG
(26)

3.1 Transfer function
In order to linearise Equation 26, the load is considered
a disturbance and therefore is not included in the transfer
function. Doing this, it is possible to Laplace transform
the equation that results in the transfer function below:

θHSR(s) · s
τe

=
1

sJR +BR
(27)

The inertia contribution JWD from the wire being wound
onto the LSR drum is modelled as a linear expression
depending on the angular position θLSR. The largest
error between the linear expression and the nonlinear
was less than 2%. Since the effective drum radius rθLSR

is included in the static load, its effects on the load
torque applied on the LSR are considered part of the

disturbance. An equivalent system inertia JR is found
by adding up the inertia terms on the left hand side
of Equation 26. The same is done for the equivalent
viscous damping coefficient BR for which the HSR and
LSR dampings have been combined.

4. Spring system mechanical model
The mechanical system including the torsional spring
effect of the magnetic gear is considered as a system of
two degrees of freedom, one for the HSR assembly and
one for the LSR/drum assembly. The torsional spring
between the gearing and the LSR is now included to
describe the investigate the behaviour. The wire for
this system is still considered rigid. The mathematical
model of the mechanical system then consists of two
simultaneous equations of motion, one for each of the
aforementioned assemblies:

JHSRθ̈HSR = τe − Tt(φ)−BHSRθ̇HSR (28)

JLSRθ̈LSR = Tt(φ)G−BLSRθ̇LSR + τL (29)

Where Tt(φ) is the torque transfer expression of the
magnetic gear [6], defined as:

Tt(φ) = Tmsin(φ) (30)

where:
φ = pHSRθHSR + pLSRθLSR (31)

4.1 Transfer function
To obtain a transfer function, the nonlinear equations
are to be Laplace-transformed, but this requires a
linearization of the non-linear terms. The only non-
linear term from Equation 28 and 29 is the torque
transfer expression given in Equation 30. It is linearized
by a first order Taylor expansion around selected
linearization points:

Tt(φ) ≈ Tt(φ0)

+ (φ− φ0)

[
∂

∂φ
Tt(φ)

]
(φ0,θHSR0,θLSR0)

(32)

Which when evaluated becomes:

Tt(φ) ≈ Tmsin(φ0) + (φ− φ0) Tmcos(φ0) (33)
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To obtain a spring stiffness which is able to represent
a realistic range of angular displacements between the
HSR and LSR, the linearization points of θHSR0 and
θLSR0 are both chosen to be 0. The torque transferred
from a given angular displacement in either direction
from this equilibrium point on the sine curve will be the
same. Using the two chosen linearisation points allows
for calculation of φ0:

φ0 = pHSRθHSR0 + pLSRθLSR0 = 0 (34)

Inserting the calculated φ0 value of 0 and the slip torque
Tm referred to the HSR side into Equation 33 now yields
the linear torsion spring term:

Tt(φ) ≈ Tmsin(φ0)+(φ−φ0)Tmcos(φ0) = kmφ (35)

Inserting the linearized spring constant km into the non-
linear equations, they can be Laplace transformed and
expressed as the matrix-vector system in Equation 36:

[
K1 K2

K3 K4

]{
θHSR

θLSR

}
=

{
τe
0

}
(36)

where:

K1 = JHSRs
2 +BHSRs+ kmpHSR

K2 = kmpLSR

K3 = −kmpHSRG

K4 = JLSRs
2 +BLSRs− kmpLSRG

(37)

The system of two equations can be solved for θLSR

by Cramer’s rule. Dividing both sides by the electrical
torque τe and multiplying both sides by s then yields
the transfer function describing the angular velocity of
the LSR with the electrical torque as input:

sθLSR

τe
=

kmpHSRG

D1s3 +D2s2 +D3s+D4
(38)

where:

D1 = JHSRJLSR

D2 = BHSRJLSR +BLSRJHSR

D3 = −GJHSRkmpLSR + JLSRkmpHSR +BHSRBLSR

D4 = −BHSRGkmpLSR +BLSRkmpHSR
(39)

Note that the configuration of the magnetic gear
modulator the gearing ratio G is negative, ensuring a
positive characteristic equation.

5. Controller design
With the transfer functions for the linear systems found,
it is now possible to begin designing the PI controller for
the rigid system to then apply it on the spring system.
For an easier read, the main equations are rewritten here.
The current equations are obtained from Equation 13
and 14. The electrical torque is found in subsection 2.1
and the rigid and spring system equations can be found
in subsection 3.1 and 4.1 respectively.

id:
id(s)

ud(s)
=

1

sL+Rs
(40)

iq:

iq(s)

uq(s)
=

1

sL+Rs
− θ̇m(s)

uq(s)

pλpm
2(sL+Rs)

(41)

τe:
τe
iq

=
3p

4
λpm (18)

Rigid system:
θHSR(s) · s

τe
=

1

sJR +BR
(27)

These transfer functions can be represented in a block
diagram as can be seen below:

Fig. 3 Block diagram showing how the nonlinear rigid
system simulation model is built.

Because these equations have been linearised and
Laplace transformed, some linear control theory can be
applied. In this case, pole-zero cancellation is applied.

5



5.1 Current controller
The first of the two controllers desgined is the inner
loop controller for the current. The transfer function for
this loop is shown below:

iq
iref

=

(
Kpc +

Kic

s

)(
1

sL+Rs

)
(42)

The aim is to place the zero of the PI controller such
that the plant transfer function pole is cancelled. The
response of the system, then depends entirely on the
designed PI controller. To do this, some rearranging of
Equation 42 is necessary where, on the first parenthesis,
s has been used as a common denominator and Kic has
been multiplied and divided by Kpc so it can be taken
out as a common factor. In the second parenthesis, L
has been divided on all terms to obtain a standard first
order transfer function [5]:

iq
iref

= Kpc

s+
Kic

Kpc

s


 1

L

s+
Rs
L

 (43)

Because it is assumed that Rs and L are constant,
Equation 44 the following condition is made [5]:

Kic

Kpc
=
Rs
L

(44)

With Equation 44, the pole and zero are cancelled
out and therefore Equation 43 can be simplified to
Equation 45:

iq
iref

=
1(
L

Kpc

)
s

(45)

From [5] the relation between Equation 45 and the
bandwidth for the controller is found and the equation
is as follows:

|Gc(jωcc)| =
1∣∣∣∣ LKpc
jωcc

∣∣∣∣ = 1→ ωcc =
Kpc

L
(46)

From Equation 46, the proportional gain for the
controller can be found, and with it, the integral gain
can be found using Equation 44.

Kpc = Lωcc (47)

Kic = Rsωcc (48)

To apply the speed controller on cascade form, this open
loop controller has to be closed. Once this is done, the
closed loop transfer function is as follows [5]:

iq
iref

=
ωcc

s+ ωcc
(49)

5.2 Speed controller
The speed controller is applied in cascade with the
current controller. This one is the outer loop of the
system and is the one controlling the speed. The transfer
function for the open loop system is shown below:

θ̇m

θ̇m,ref
=

(
Kps +

Kis

s

)(
ωcc

s+ ωcc

)
·
(

3pλpm
4

)
·
(

1

sJR +BR

)
(50)

The bandwidth for the speed controller ωcs is chosen
to be ten times smaller than that of the current
controller ωcc in order for it not to be affected by
the current control loop [5]. With this in mind, the
current controller gain becomes approximately one
when near the speed controller bandwidth ωcs and
therefore, current controller is assumed to not affect the
speed controller [5].

Gc(s) =
ωcc

s+ ωcc
≈ 1 (51)

If the cutoff frequecy ωpi of the speed PI controller
is much smaller than the bandwidth ωcs of the speed
controller [5], then the PI speed controller transfer
function can be reduced:

Gpi(s) = Kps +
Kis

s
≈ Kps (52)

With these approximations for the controllers, Equa-
tion 50 can be reduced to:

θ̇m

θ̇m,ref
= (Kps)

(
3pλpm

4

)(
1

sJR +BR

)
(53)
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From [5], the open loop transfer function gain at
frequency ωcs is 0 dB as seen below:

|Gs(jωcs)| = 0 dB (54)

From this, the proportional gain Kps and integral gain
Kis for the speed controller can be found [5]:

Kps =
4(JR · ωcs +BR)

3pλpm
(55)

Kis =
Kpsωcs

5
(56)

6. Comparison
To compare how the designed controller in the previous
section performs on the two different systems, some
experiments are made on their respective simulation
models. These simulations show ramp inputs that
accelerate and decelerate the system with an absolute
value of 35 rad/s2. The first comparison is of the angular
velocity of the rigid and spring systems:

Fig. 4 Angular velocity response for the models
when a ramp input with positive and negative
slopes is applied

Figure 4, shows that the angular velocity response of
the models follows the described input and a difference
between the models is not observed. The next figure to
be studied is the response of electrical torque with the
same input as for Figure 4:

Fig. 5 Angular velocity response for the models
when a ramp input with positive and negative
slopes is applied

As can be seen from Figure 5, the electrical response
from the electrical torque is different for the rigid and
spring models. Oscillations from the spring model can
be observed and related to the torsional spring effect of
the magnetic gear. These oscillations are greater when
the acceleration of the HSR is changing.

So far, the models have been compared such that the
spring in the gear has been excited by the acceleration of
the motor. By applying a disturbance while the angular
velocity is constant, it is also possible to energize
the spring and, therefore, possibly observe different
behaviours in the systems.

Fig. 6 Angular velocity response when a disturbance of 800
kg is applied at 3s

Figure 6 shows that for both the rigid and spring
system, the controller is capable of compensating for the
disturbance. In the rigid model the controller is able to
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counteract this load disturbance of 800 kg in under 0.1s
with the angular velocity changing less than 0.05 rad/s.
The controller in the spring system tries to compensate
for the change in angular velocity but starts oscillating
with an amplitude of less than 0.05 rad/s that slowly
decreases. The reason behind this is that the controller
does not take into account the torsional spring effect
and for that reason oscillates.

In conclusion, in order to obtain the same results in
the simulations, the torsional spring effect would have
to be taken into account when designing a controller.
One way of achieving this could be to implement a
feedforward compensator that would compensate for the
load disturbance. In this case, a good evaluation of the
load and its transfer function would be necessary.

7. Discussion
In both models of the PMSM winch drive, an additional
complexity to study would be the inclusion of the
wire stiffness. The wire stiffness would be a new non-
linearity, as the stiffness of the wire would depend on
the length. This would require a linearisation around a
desired lifting point along the height of the wind turbine,
from where a constant stiffness would be found. This
additional degree of freedom of the load mass would
open up investigation of additional oscillations caused
by this phenomenon.

More investigation would also have to be made about
the applied load step at a fixed angular velocity of the
HSR in Figure 6. The mass of 800 kg caused a speed
decrease of only of 0.025 rad/s on the reference speed
of 70 rad/s on the HSR, and recovered in approximately
0.07 s. However this quick correction could be caused
by the equivalent HSR mass moment of inertia of over
600 kgm2 when referred to the LSR-side on the other
side of the magnetic gear.

8. Conclusion
From the comparisons in section 6, it can be concluded
that the cascade controller designed for the rigid system
was able to sufficiently control the spring system, as
it showed similar results for both systems. Highlights
from these were the controller’s ability to keep the load
steady at zero velocity, and maintain a steady state error
of negligible magnitude (< 1%), also when lifting and
descending the load. The current controller was able to

stay within the maximum torque rating of the motor
when given load steps and ramp inputs on the speed.

The controller had difficulty reducing oscillations when
a load step was applied while running at a fixed speed,
however the amplitude of these oscillations was of
negligible magnitude, in that the speed oscillated with
an amplitude of approximately 0.025 rad/s while at a
reference speed of 70 rad/s. Additional tuning of the
controller would be necessary in order to see if the
oscillations could be reduced further.
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