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Abstract
This project modelled the band structure of a monolayer of the transitional-metal dichalcogenide molybdenum disulfide
(MoS2) through the use of the tight binding method. While the properties of MoS2 have been of major scientific
interest for many years, this project investigated an aspect of the 2D material which is not well researched. Namely,
how a vertical external electric field affects the band structure, and certain electrical and optical properties of a MoS2
monolayer. MoS2 monolayers are known to have a direct bandgap of ≈1.8 eV. By applying an external electric field
of ε = 5.52 V/Å, the bandgap both decreased to 1.12 eV and was found to shift from direct to indirect. Furthermore,
increase in external electric field strength to ε = 10.9 V/Å caused the bandgap to disappear entirely. Finally, external
electric fields were also found to generally decrease the susceptibility and conductivity of MoS2 monolayers as the
electric field strength increased.
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1. Introduction
There has been considerable interest in research into
MoS2. Being a semiconductor material, it has a notable
potential in regards to electronics and photonics [1].
Especially microelectronics have been of interest for
research into MoS2. Bulk MoS2 has an indirect bandgap
of 1.2 eV, but single layers of MoS2 instead act as direct
bandgap semiconductors with a bandgap of 1.8 eV. This
has garnered interest into their usefulness as switchable
transistors and as photodetectors [2, 3]. Additionally,
MoS2 has been shown to demonstrate superconductivity
[4]. Finally, MoS2 has also been identified as an efficient
catalyst for hydrogen evolution, making it useful for
producing hydrogen gas for fuel cells [5]. An important
tool in moving towards a more sustainable power supply.

MoS2 is a layered transition metal dichalcogenide. Each
layer is only connected to the other layers by weak van
der Waals forces, and it is therefore possible to obtain a
thickness of a single layer [6]. This is a useful property
in regards to creating nanoscale devices, as many of the
aforementioned research is working on such devices. A
significant portion of this research has been aimed at
examining the feasibility of modifying the bandgap of
MoS2 for use in nanoscale electronic devices [7, 8, 9],
where especially the utilization of strain as a method
to modify the bandgap properties has been attempted

[10, 11].

This project will model and investigate the MoS2

structure on an atomic basis through the use of the
TB model. This will grant a better understanding of
the band structure and behaviour of the 2D material.
The model will be used to investigate the effect of an
external electric field on the properties of the bandgap of
a MoS2 monolayer. As well as how an external electric
field affects the electrical properties of susceptibility and
conductivity.

2. Tight Binding Method
In order to model the electronic properties of 2D
materials, the TB method, sometimes called LCAO,
is utilized. The relevant theory for this model will be
presented here.

The TB model arises from the field of quantum
mechanics. As with many parts of quantum mechanics,
the fundamental equation for the foundation of the TB
model is the time-independent Schrödinger equation

Ĥ|Ψ⟩ = E|Ψ⟩, (1)

where Ĥ is the Hamilton operator (also called the
Hamiltonian), Ψ is the wavefunction, and E is the
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energy of the system. This equation is an eigenvalue
equation. To model the 2D materials of interest to this
project, it is necessary to solve this equation for a one-
electron Schrödinger equation in a special set of basis
functions. The basis are the atomic orbitals of interest to
the system, and depend greatly on the constituent atoms
of the system and their orientation in relation to each
other. In the case of a single particle the Schrödinger
equation is of the form

Ĥ|ψ⟩ = (T + V )|ψ⟩ = E|ψ⟩, (2)

where T is the one-electron kinetic energy, and V is
the effective potential in a mean-field approximation.
The basis functions of the wavefunction are commonly
written on the form |n, i, µ⟩. Here, n denotes the lattice
vector Rn, i denotes the i-th basis atom, and µ denotes
the type of orbital.

It is now assumed that the solution can be written in the
form of a linear combination of atomic orbitals, and if
so it is possible to take the sum

|ψ⟩ =
∑
n,i,µ

cn,i,µ|n, i, µ⟩, (3)

where |ψ⟩ now represents the molecular orbital created
by the sum of atomic orbitals (|n, i, µ⟩), and cn,i,µ is a
coefficient which is multiplied with each atomic orbital.
By inserting 3 into 2 one gets.

∑
n,i,µ

cn,i,µĤ|n, i, µ⟩ = E
∑
n,i,µ

cn,i,µ|n, i, µ⟩. (4)

Applying ⟨m, j, ν| the expression becomes

∑
n,i,µ

cn,i,µ⟨m, j, ν|Ĥ|n, i, µ⟩ = E
∑
n,i,µ

cn,i,µ⟨m, j, ν|n, i, µ⟩,

(5)

where m, j, ν likewise denotes a lattice vector, the j-th
atom, and the type of orbital, respectively. This equation
can be constructed for the other orbitals as well.

This equation can be converted into a matrix equation
instead. This results in a generalized matrix eigenvalue
problem, succinctly written as

H̄ · c = ES̄ · c, (6)

where c is the coefficient vector for the linear combi-
nation of the eigenstate |ψ⟩, similar to the role in the
’standard’ equation, and H̄ and S̄ are the Hamiltonian
and overlap matrices, respectively. H̄ and S̄ are repre-
sented in the basis of the atomic orbitals and correspond
to entries as seen below

Hmjν
niµ = ⟨m, j, ν|Ĥ|n, i, µ⟩ (7)

Smjν
niµ = ⟨m, j, ν|n, i, µ⟩. (8)

2.1 Parametrization of the Hamiltonian and Overlap
Matrices
The matrix terms Hnjν

0iµ and Snjν
0iµ are determined by

studying the terms which appear in the integral. The
Hamiltonian matrix is studied, and to simplify things a
one-atom basis is considered. This can be seen below

H0ν
0µ =

∫
ϕ∗µ(r)(T + V )ϕν(r − Rn)dr

=

∫
ϕ∗µ(r)(T +(

∑
m

vat(r−Rm)))ϕν(r−Rn)dr, (9)

where ϕµ is the wave function of orbit µ, and vat(r −
Rm) is the atomic potential of the atom in the m’th unit
cell. This leads to a few different types of integrals for
the potential energy. Namely the one-, two- and three-
center integral. The last of these is neglected, as they
are generally fairly small for atomic orbitals. However,
the first two are relevant, and will be presented here.

The one-center integral can be expressed as

∫
ϕ∗µ(r)vat(r)ϕν(r)dr. (10)

For these integrals there are two scenarios of interest.
Either µ = ν or µ ̸= ν. If µ = ν then the integral
corresponds to the typical on-site energy (ϵµ) for the µ
atomic orbital. If µ ̸= ν then its contribution is small
assuming ⟨ϕµ|ϕν⟩ ≠ 0
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The two-center integral can be split into two forms
(here called ’1’ and ’2’). Two-center integral 1 can be
expressed as

∫
ϕ∗µ(r)

∑
n̸=0

vat(r − Rm))ϕν(r)dr. (11)

If µ = ν, then the integral contributes to the on-site
energy, as a result of the other atoms. If µ ̸= ν, then
the contribution is termed a ’hopping element’, and is
also a result of the other atoms.

Two-center integral 2 can be expressed as

∫
ϕ∗µ(r)vat(r))ϕν(r − R)dr,R ̸= 0. (12)

These integrals also contribute the hopping elements,
which describes the electron transition between two
different orbits. As a final important note, the matrix
elements which describe the kinetic energy T are
unchanged for both one-center and two-center integrals.
This means they also contribute to the on-site and
hopping energies [12].

Unfortunately, determining these integrals can be rather
complicated. The next section will introduce a method
to simplify the process.

2.2 Slater-Koster Method
The method introduced by Slater and Koster [13] is an
interpolation method. It simplifies the determination of
the integrals by instead reducing them to constants at the
points of symmetry within the BZ, thereafter allowing
them to be used for calculations throughout the whole
BZ. This means the TB model is much simpler, as it
can be solved by only considering some parameters.

The method works by considering the interaction of
the orbitals. More specifically, it uses the angular
dependence of the (ϕν(r − R)), which is described
by the s-, p-, and d-orbitals, to determine the angular
dependence of hopping energies for each type of orbital
interaction. The orbitals are linear combinations of the
spherical harmonics, and as such, the hopping elements
consist of the following matrix elements of Ĥ with the
spherical harmonic functions |l,m⟩

V i→j
ll′m = ⟨n, i, l,m|Ĥ|n′, j, l′,m′⟩. (13)

Here l,l’ represent the angular-momentum quantum
number of the orbitals, and m, m’ represent the magnetic
quantum number. The magnetic quantum numbers m
and m’ must be the same because of selection rules.

The hopping elements of the Hamiltonian of s-, p-,
and d-orbitals can be expressed as a linear combination
of the ten types of Slater-Koster parameters (had the
three-center integral been included, more parameters
would have been necessary). The ten relevant linear
combinations can be seen in figure 1.

Each linear combination will consist of two of these
orbital types, and will express a type of bonding
symmetry. The relevant symmetries are commonly
labeled σ, π or δ.

Fig. 1 The ten linear combinations of the possible s-, p-, and
d-orbitals, which represent the ten Slater-Koster parameters.
The red and yellow colors indicate the polarization (+ or -)
of the orbitals [14].

Each of these ten Slater-Koster parameters are linear
combinations of the matrix elements as presented in
equation 13. Returning to this equation it is possible
to introduce some simpler notation. The l,l’ and m
in the Vll′m notation can instead more directly show
the orbital interaction in question. The l and l’ can
be replaced by the type of orbital (s-, p-, or d-type),
previously denoted µ and ν, since this is what the
angular momentum describes. Likewise the m stands for
one of the three bonding symmetries. As an example,
interaction between and s-orbital and a p-orbital can
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therefore be given the notation Vspσ.

The ten Slater-Koster parameters are sufficient to
describe a system which consists of one atom per unit
cell (so i = j), but importantly where only nearest-
neighbor interaction along the z-axis is considered.
Applying the notation to all possible ten Slater-Koster
parameters, as seen in figure 1, with those considerations
in mind, and inserting them into the Hamiltonian matrix
yields a 9x9 matrix.

If i ̸= j, then these values must be determined
separately. The values within the matrix therefore
depend greatly on the exact atoms in the lattice and
their crystal structure/orientation. The parameters must
therefore be determined for each pair of atoms in
the basis being modelled, since the Hamiltonian also
depends on the distance between atoms.

Since there is an angular dependence of the spherical
harmonic functions, all of the hopping energy elements
along a random orbital bonding direction R can be
expressed by these linear combination of the ten Slater-
Koster parameters. This means it is possible to take
the matrix seen in equation ?? (which is for hopping
energy elements for a bonding direction along the z-
axis), and rotate it into the corresponding matrix with
hopping energy elements along the R-direction. Doing
this is called a Slater-Koster transformation.

A simple example of a hopping element between two
orbitals can be seen in figure 2.

Fig. 2 Slater-Koster transformation for a s-orbital and a pz-
orbital. The left-most orbital combination (Hpz

s ) is a linear
combination of the other two cases (Vspσ and Vspπ from left
to right) [12].

The notation on figure 2 can be further simplified by
utilizing the unit vector of R. Then, the unit vector’s
components, r̄ = R

|R|
=

(
l m n

)T
, can be utilized

rather than cos and sin functions. This would change
the equation shown on 2 into

Hpz
s (R) = n · Vspσ, (14)

which is the method of implementation used in this
project [12].

Once the matrix elements of all orbitals have been
calculated, the energies of electrons at all points within
the first BZ are known. This can be summarized in a
band structure graph.

To get a fully correct band structure, the spin orbit
coupling (SOC), must also be taken into account. This
will not be elaborated here, however, a derivation of it
can be found in chapter 10 of [15].

2.3 External Electric Field
To model the effect of an external electric field on
the MoS2 monolayer, the necessary components for
describing a static (Ĥ0) electric field will be determined.

The energy of a charged particle in a static electric field
is

E = ε⃗qr⃗. (15)

If the electric field is parallel with the z-axis, then eq.
15 becomes

E = εqz, (16)

where q is the electric charge. This makes the Hamilto-
nian for the system

Ĥ0 =

(
− h̄2

2m
∇2 + V

)
+ εqz. (17)

The terms within the parenthesis are the energy
contributions from the momentum of the electron
and the potential field of the nucleus. These energy
contributions are accounted for within the tight-binding
model. As such, the energy contribution from the
external electric field may simply be added on top of
the energy calculated through the tight-binding model

⟨φn|Ĥ0|φm⟩ = Enm + εq⟨φn|z|φm⟩. (18)

The function ⟨φm|z|φn⟩ can be simplified further by
choosing a reference point which lies between the two
atoms under consideration

⟨φn|z|φm⟩ = ⟨φn|z − z̄|φm⟩+ z̄⟨φn|φm⟩, (19)
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where z̄ is the average z-value for the two orbitals.
The first term in eq. 19 disappears, since z is an even
function and φ is an odd function. The second term,
⟨φn|φm⟩ is simply the overlap between the atomic
orbitals. This then gives the final equation

∆H = εqz̄Snm. (20)

As the derivation of the equation for the implementation
of the electric field is done with the electric field
parallel to the z-axis, this is the direction it will be
implemented in the code. This means that any mention
of the electric field in later sections refer to an electric
field perpendicular to the MoS2 monolayer.

With this theory in mind, a MatLab program was
produced to model the band structure in the presence
of a static external electric field.

3. Band Structure in Electric Fields
A plot of the band structure without any applied external
fields can be seen on figure 3.

Fig. 3 Modelled band structure when considering the s-, p-,
and d- orbitals in MoS2 with SOC taken into account. The
dotted line marks the Fermi level of EF = 0.121 eV, and the
double arrow indicates the bandgap energy of Eg = 1.81 eV.

As can be seen on figure 3, the band structure has a
direct transition in the K point equal to Eg = 1.81 eV.

Having constructed a TB model of the band structure
of MoS2, it is of interest to investigate how this band
structure changes in response to the presence of a
vertical static external electric field. Figure 4 shows the
band structure of MoS2 in an electric field strength of
7.2 V/Å.

Fig. 4 Modelled band structure of MoS2 with SOC taken
into account. An electric field of strength ε = 7.2 V/Å has
been applied across the width of the monolayer. The dotted
line marks the Fermi level of EF = 0.121 eV, and the double
arrow indicates the bandgap energy of Eg = 1.81 eV.

At this external electric field strength, and interesting
developement has occurred. Namely the bandgap has
shifted from being a direct bandgap in K to an indirect
bandgap from the Γ point in the valence band (VB)
to the K point in the conduction band (CB). The shift
already occurred at an external electric field strength of
5.52 V/Å.

In general, as the strength of the electric field increases,
all bands increase slightly in energy. The order of the
bands does not change relative to each other, but their
exact shape and curvature does. The bands which were
split as a result of taking SOC into account are further
split while in an electric field. However, the electric
field has not changed the regions in which the split is
observable.

The results found here agree with the findings of
the couple of other similar articles. The two articles
modelled a flat MoS2 monolayer with an applied a
perpendicular electric field through DFT calculations. C.
V. Nguyen et al. (2016) [16] determined that applying a
perpendicular electric field strength of 0.6 V/Å across a
MoS2 monolayer causes the bandgap to decrease and
shift from direct to indirect. In agreement with the
findings of this project, they determine a direct bandgap
from K in the VB to K in the CB, which switches to an
indirect from Γ in the VB to K in the CB. Zibouche et
al. (2014) [17] observed the same switch from direct
to indirect at these points. While it is not specified
precisely at which external electric field strength they
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observed this switch, it is shown to only barely have
happened at electric field strength of 3 V/Å, which is
comparable to the 5.52 V/Å found in this project.

While all bands increase slightly in energy, as strength
of the external electric field is increased, some regions
of k-space increase faster than others. This is especially
true in the Γ point in the VB. The greater increase in
the energy of the VB in the Γ point has the interesting
consequence that by increasing the strength of the
electric field enough, the MoS2 monolayer modelled
changes from being a semiconductor material to a
conductor material instead. This shift occurs at field
strength of approximately 10.9 V/Å, at which point the
energy of the VB in the Γ point is virtually identical
with that of the energy of the CB in the K point. This
phenomena is observable in figure 5.

Fig. 5 Modelled band structure with SOC in the presence of
an electric field at a strength of 11 V/Å. Important to note is
the energy of the VB at Γ is higher than that of the CB at K,
meaning the band structure no longer exhibits semiconductor
band structure. The dashed and dotted line highlights the
energy of the CB at the K point. EF = 0.007 eV.

This effect has major implications for the use of MoS2

monolayers in nanoelectronics and optical devices, since
it allows for construction of a tunable bandgap. Allow-
ing for switching between semiconductor and conductor
material properties. Although the electron would need
to change its momentum, since the bandgaps do not
meet directly in k-space, but simply have comparable
energies. This could for instance be accomplished by a
scattering process.

4. Electrical Properties
Returning to the band structure with SOC and no
external electric field, this band structure was used to
investigate the electrical properties of MoS2. The exact
electrical properties investigated are the susceptibility
(χ) and conductivity (σ), while investigating either the
absorption can be partially identified, since particular
properties are proportional to it. After calculating
them with no external field, the same properties were
determined under various electric field strengths. The
energies modelled on the x-axis on graphs in this section
should be imagined as energy provided by photons with
energy E = h̄ω.

4.1 Susceptibility
The real (Re) and imaginary (Im) parts of χxx and χzz

for a MoS2 monolayer as modelled in this project with
no external field can be seen in figure 6

Fig. 6 Susceptibilities of the modelled MoS2 monolayer with
no external electric field. The blue, red, green and black lines
correspond to Reχxx, Imχxx, Reχzz , and Imχzz , respectively.
x-axis: Energy in [eV], y-axis: Susceptibility, χ

χxx = χyy, which is why only one of them has been
plotted. The Re parts are the susceptibility itself, while
the Im parts are proportional to the absorption.
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Fig. 7 Susceptibilities of the modelled MoS2 monolayer with
an external electric field of 11 V/Å. The blue, red, green and
black lines correspond to Reχxx, Imχxx, Reχzz , and Imχzz ,
respectively. x-axis: Energy in [eV], y-axis: Susceptibility, χ

In all cases, the Im parts start at zero, while the Re
parts start above zero. The Re parts starting above zero
indicates that a MoS2 monolayer always possesses an
inherent susceptibility. Likewise the Im parts starting
at zero indicates that absorption does not take place
until sufficient energy is present in the photon such that
electronic excitations are possible. Increases to Re parts
can be interpreted as an increase in available transition
states, while peaks in Im parts are expected to appear
at energies which equal the energy between the VB and
CB bands. The Re and Im plots of both χxx and χzz

follow each other closely, with peaks and dips at the
same energies, this is a result of certain energy levels
having an abundance of transitions between different
bands, increasing both the ease by which electrons can
get excited, and the number of available states.

The case of no external electric field is considered first.
Starting from 0 eV the Re parts initially both increase
gradually with increasing energy, while the Im parts
are unchanged. At around 1.8 eV all plots increase in
susceptibility, which is expected, since this is energy
corresponds to the bandgap. Reχzz and Imχzz exhibit
two clear peaks here, which are a result of the split VB
due to SOC, this is supported by the distance between
the dual peaks being ≈0.14 eV, which corresponds to
the spin orbit splitting in K.

As the energy increases further, there is a slow but
steady rise in susceptibility until about 2.7 eV, where
all plots increase sharply. Looking at fig. 3, it can be

seen that there is an interval roughly halfway between K
and Γ where the curvature of the VB and CB are similar.
This region creates a large number of possible transition
states, and since the energy differential between the CB
and VB is approximately 2.8 eV, it corresponds well
with the observed increase in susceptibility.

Further increasing the energy to approximately 3.5 eV
results in another spike in the Reχxx and Imχxx plots,
which could be explained by considering the bandgap
at and around the Γ point, where the relatively flat VB
and CB allow for many possible electronic excitations,
since there are a large number of available states in the
CB, as many bands overlap in this region. Generally,
the differences in χxx and χzz highlight the anisotropic
nature of the MoS2 monolayer.

Moving on to the susceptibilities with various external
electric field strengths, it is interesting to compare with
no external field, and consider the differences.

In general, the starting values of the Re plots decrease
as the strength of the external electric field is increased.
Both starting at a susceptibility of around 2.8 and 3.2
with an external electric field strength of 0 V/Å, and
ending at around 1.9 and 2.8 with an electric field
strength of 11 V/Å for χxx and χzz, respectively.
Meaning χxx is significantly more susceptible to the
effects of an external electric field. The Im plots still
remain at zero susceptibility until the bandgap energy
is reached.

Following the twin peaks in Re and Im χzz, which
represent the bandgap and were discussed earlier, it is
clear that as the strength of the external electric field
increases, they are redshifted as the bandgap decreases
in energy. Interestingly, while the twin peaks are initially
quite comparable in susceptibility, as the strength of
the electric field increases, the one peak increases more
rapidly, and is noticeably higher with an external electric
field strength of 11 V/Å. It is the first peak that exhibits
this behaviour, or in other words, the split VB at the
K point with the highest energy. At the same time, the
distance between the peaks has increased slightly. This
coincides well with the increased distance between the
VB at K in figure 5.
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4.2 Conductivity
The real and imaginary parts of σxx and σzz for a MoS2
monolayer as modelled in this project with no external
field, can be seen in figure 8. As described previously,
σxx = σyy, which is why only σxx is shown. The Re
parts constitute the conductivity in the physical sense
of the ability of an electric field to move an electron.
The discussion of the conductivity will focus on the Re
parts.

Starting from 0 eV, the conductivity remains at zero
until the energy of the bandgap (1.8 eV) is reached.
Again, the split VB as a result of SOC is visible as
two small increases in Reσzz. From this point on, the
conductivity increases slowly until about 2.7 eV, at
which point there are two consecutive massive peaks in
conductivity. As with susceptibility, these peaks can be
explained by these energies constituting direct bandgap
energies between K and Γ, and around Γ, respectively.
Since an electron excited into the CB is able to move
around more freely in a semiconductor material, thus
increasing the conductivity at these energies.

It can be seen that as the strength of the E-field
increases, the real part of σxx gradually flattens out.
This flattening primarily effects the peaks before 4
eV, while the general shape and magnitude of the
conductivity after 4 eV was preserved. This same effect
was also observed for the susceptibility, and there are
two potential causes for this. The first relates to the
fact that magnitude of the conductivity and susceptibility

Fig. 8 Conductivities of the modelled MoS2 monolayer with
no external electric field. The blue, red, green and black lines
correspond to Reσxx, Imσxx, Reσzz , and Imσzz , respectively.
x-axis: Energy in [eV], y-axis: Conductivity, χ

Fig. 9 Conductivities of the modelled MoS2 monolayer with
an external electric field strength of 7.2 V/Å. The blue,
red, green and black lines correspond to Reσxx, Imσxx,
Reσzz , and Imσzz , respectively. x-axis: Energy in [eV], y-
axis: Conductivity, χ

are both related to the number available states, and the
electric field causes the bands to spread out evenly,
resulting in fewer peaks of the transition states. The
other hypothesis is that both the susceptibility and
conductivity both relate to how the material responds
to an external electric field. However, since the strong
electric field which has been applied to the material may
have saturated it, weakening its response to any further
fields.

5. Conclusion
The project succeeded in constructing a mathematical
model of the band structure of a MoS2 monolayer. This
model was then expanded to include the effects of SOC,
which caused some bands within the band structure to
split in energy in regions around the K point, while
the only effect on other regions was the splitting of
degenerate bands at the Γ point.

The model with SOC predicts a direct bandgap of Eg =
1.81 eV at the K point in good agreement with models
from previous studies.

The model was then further expanded to model the
effect of a static electric field on the band structure.
In general, increasing the strength of the electric field
increased the energies of the bands. Especially energies
in the Γ point where susceptible to the effects of an
applied electric field. An applied electric field strength
of ε = 5.52 V/Å caused the MoS2 monolayer to shift
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from a direct bandgap at K to an indirect from Γ in the
VB to K in the CB. Further increase in the electric
field strength to ε = 10.9 V/Å caused the bandgap
to disappear entirely, presenting an intriguing use of
applying a vertical electric field as a means of tuning
the bandgap of a MoS2 monolayer. Thus changing the
material properties from semiconductor to conductor.

Finally, the model was expanded to model the suscepti-
bility and conductivity of a MoS2 monolayer with and
without an external electric field, in order to determine
how the presence of an external electric field affects
these electrical properties. In general, both susceptibility
and conductivity were found to decrease as the strength
of the electric field increased.
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