

Mini Conference

Strengthening of RC Slabs and T-beams using Twin-anchor CFRP Strengthening System

Esben Elgaard Hansen, Faris Dzanovic, Kristian Tallaksen Structural and Civil Engineering, Aalborg University

Motivation

Heavier vehicles -> Sufficient load-bearing capacity?

Solutions

- Construction of new bridges:
 - Costly
 - Time-consuming
 - Environmentally harmful

- Strengthening
 - Cheaper
 - Time-efficient
 - Environmentally friendly

Twin-anchor CFRP strengthening system

CFRP

Pros:

- Lightweight (5 x lighter than reinforcement steel)
- High tensile strength (5 x higher than reinforcement steel)

High corrosion resistance

Cons:

Brittle

Anisotropic

Strengthening of Existing Bridges

- Carried out several tests
- Mounted onto RC geometries
- Main goal: efficiency of strengthening
- Four-point bending
- Tests results ductile failures

Strengthening of Existing Bridges

- Successful tests
- Increased and more ductile response
- Strengthening effects: up to 50 % in ultimate capacity
- System's potential for real-world applications

Modelling of strengthening

---Analytical Method 2

- Input:
 - Material parameters
 - Concrete
 - Steel
 - CFRP
- Analytical approach
 - Two methods
- Numerical approach
 - Finite Element Software DIANA

Deflection [mm]

Twin-anchor CFRP strengthening system modelled on T-beam

Deflection [mm]