Fractions

Fractions are numbers of the form

$$\frac{a}{b}$$
,

where *a*, *b* are numbers and $b \neq 0$. *a* is the *numerator* and *b* is the *denominator*.

Rules of Calculation

The following rules apply:

$$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}, \quad \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}, \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc},$$
$$a\frac{b}{c} = \frac{ab}{c}, \quad \frac{\frac{a}{b}}{\frac{b}{c}} = \frac{a}{bc}, \quad \frac{\frac{a}{b}}{\frac{b}{c}} = \frac{ac}{b}.$$

Reducing/Expanding Fractions

Common factors can be reduced:

$$\frac{a}{b} = \frac{ac}{bc}$$

Exponents

Exponents are numbers of the form x^a , where x is the *base* and a is the *exponent*.

Rules of Calculation

The following rules apply:

$$\begin{aligned} x^{a}x^{b} &= x^{a+b}, \quad \frac{x^{a}}{x^{b}} = x^{a-b}, \quad (xy)^{a} &= x^{a}y^{a}, \\ \left(\frac{x}{y}\right)^{a} &= \frac{x^{a}}{y^{a}}, \quad (x^{a})^{b} = x^{ab}, \qquad x^{-a} &= \frac{1}{x^{a}}. \end{aligned}$$

Roots

If $x \ge 0$ and $n \in \mathbb{Z}_+$ then there exists a number $\sqrt[n]{x} > 0$ such that

$$(\sqrt[n]{x})^n = x.$$

Note that $\sqrt[n]{x} = x^{\frac{1}{n}}$. Rules of Calculation

The following rules apply:

$$\sqrt[n]{x} = x^{\frac{1}{n}}, \quad \sqrt[n]{x^m} = x^{\frac{m}{n}} = (\sqrt[n]{x})^m,$$
$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}, \qquad \qquad \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}.$$

Square Identities

The following rules apply:

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$
$$(a-b)^{2} = a^{2} + b^{2} - 2ab$$
$$(a+b)(a-b) = a^{2} - b^{2}.$$

Equations

Equations can be simplified using the following rules:

- 1. You may add or subtract the same number on both sides of an equation.
- 2. You may multiply or divide both sides of an equation by the same number (except 0).

Quadratic Equations

Quadratic equations have the form

$$ax^2 + bx + c = 0,$$

The solutions are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Factorization

If $ax^2 + bx + c = 0$ has roots r_1 and r_2 , then the following holds:

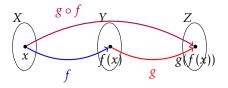
$$ax^{2} + bx + c = a(x - r_{1})(x - r_{2}).$$

Functions

A function $f: X \to Y$ assigns to each $x \in X$ exactly one element $f(x) \in Y$.

Composite Functions

If $f: X \to Y$ and $g: Y \to Z$, then the composition $g \circ f: X \to Z$ is defined by $(g \circ f)(x) = g(f(x))$. *f* is the *inner function*, and *g* is the *outer function*.



Inverse Functions

Two functions $f: X \to Y$ and $g: Y \to X$ are *inverses* of each other if

$$f(g(y)) = y$$
, and $g(f(x)) = x$

for all x in X and y in Y.

Polynomials

A first-degree polynomial is given by:

f(x) = ax + b.

A second-degree polynomial is given by:

 $f(x) = ax^2 + bx + c.$

Logarithms and Exponential Functions

The logarithm with base a, \log_a : $]0, \infty[\rightarrow \mathbf{R}$, is the inverse of the exponential function $f_a(x) = a^x$ ($a > 0, a \neq 1$). It holds that

$$\log_a(a^x) = x$$
 and $a^{\log_a(y)} = y$

and we have

 $\ln x = \log_e x, \qquad \log x = \log_{10} x$

Rules of Calculation

The following rules apply:

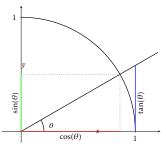
$$\log_a(xy) = \log_a(x) + \log_a(y),$$

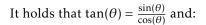
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r \log_a(x).$$

Trigonometric Functions

The trigonometric functions are defined based on the unit circle:





θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin $ heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan $ heta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

Differential Calculus

The derivative of *f* is written as $f' = \frac{d}{dx}f = \frac{df}{dx}$.

Rules of Differentiation

We have the following:

f(x)	f'(x)
с	0
x	1
x^n	nx^{n-1}
e^x	e ^x
e ^{cx}	ce ^{cx}
a^x	$a^x \ln a$
ln x	$\frac{1}{x}$
$\cos x$	$-\sin x$
sin x	$\cos x$
tan x	$1 + \tan^2(x)$

General Rules of Differentiation

The following hold:

(cf)'(x) = cf'(x) $(f \pm g)'(x) = f'(x) \pm g'(x)$ (fg)'(x) = f'(x)g(x) + f(x)g'(x) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$ $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$

The last rule is called the *chain rule*.

Indefinite Integrals

A function f has an *antiderivative* F if

$$F'(x) = f(x)$$

The indefinite integral of f is

$$f(x)\,dx = F(x) + k,$$

where F'(x) = f(x) and $k \in \mathbf{R}$. General Rules

$$\int cf(x) dx = c \int f(x) dx$$
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$
$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int f(g(x))g'(x) dx = F(g(x)) + k$$

The third rule is called *integration by parts*, and the last is called *integration by substitution*. **Common Rules**

We have the following:

f(x)	$\int f(x) dx$
С	cx + k
x	$\frac{1}{2}x^2 + k$
x^n	$\frac{1}{n+1}x^{n+1} + k$
e ^x	$e^x + k$
e ^{cx}	$\frac{1}{c}e^{cx} + k$
$\frac{1}{x}$	$\ln(x) + k$
ln x	$x\ln(x) - x + k$
$\cos x$	$\sin x + k$
sin x	$-\cos x + k$
tan x	$-\ln(\cos(x)) + k$

Integration by Substitution

Given an integral of the form $\int f(g(x))g'(x) dx$, apply the following method:

- 1. Let u = g(x).
- 2. Compute $\frac{du}{dx}$ and isolate dx.
- 3. Substitute g(x) and dx.
- 4. Evaluate the integral with respect to *u*.
- 5. Substitute back.

Definite Integrals

The definite integral of f over the interval [a, b] is

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

where F is an antiderivative of f.

General Rules

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} (x)g(x) dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} (x)G(x) dx$$
$$\int_{a}^{b} f(g(x))g'(x) dx = [F(x)]_{g(a)}^{g(b)}$$

Integration by Substitution

Given an integral of the form $\int_{a}^{b} f(g(x))g'(x) dx$, apply the following method:

- 1. Let u = g(x).
- 2. Compute $\frac{du}{dx}$ and isolate dx.
- 3. Substitute g(x), dx and the bounds.
- 4. Evaluate the integral with respect to *u*.

Differential Equations Solution Formulas

Differential Equation	General Solution
$\overline{f'(x)} = k$	f(x) = kx + c
$\overline{f'(x) = h(x)}$	$f(x) = \int h(x) dx$
f'(x) = kf(x)	$f(x) = ce^{kx}$
$\overline{f'(x) + af(x)} = b$	$f(x) = \frac{b}{a} + ce^{-ax}$

The Armor Formula

The differential equation

$$f'(x) + a(x)f(x) = b(x)$$

has the general solution

$$f(x) = e^{-A(x)} \int b(x) e^{A(x)} \, dx + c e^{-A(x)}$$

where A'(x) = a(x). Vectors in the Plane

A vector \vec{u} in the plane is written as $\vec{u} = [x, y]$ where $x, y \in \mathbf{R}$. **Rules of Calculation**

For $\vec{u} = [x_1, y_1]$, $\vec{v} = [x_2, y_2]$, and $c \in \mathbf{R}$, we have:

$$\vec{u} \pm \vec{v} = \begin{bmatrix} x_1 \pm x_2 \\ y_1 \pm y_2 \end{bmatrix}, \qquad \vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2,$$
$$c\vec{u} = \begin{bmatrix} cx_1 \\ cy_1 \end{bmatrix}, \quad \det(\vec{u}, \vec{v}) = x_1 y_2 - x_2 y_1$$

The length of \vec{u} is $\|\vec{u}\| = \sqrt{x_1^2 + y_1^2}$.

The Angle Between Two Vectors

For the angle θ between \vec{u} and \vec{v} , we have:

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}, \quad \sin\theta = \frac{\det(\vec{u}, \vec{v})}{\|\vec{u}\| \|\vec{v}\|}$$

Furthermore:

- 1. \vec{u} and \vec{v} are orthogonal $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$.
- 2. \vec{u} and \vec{v} are parallel \Leftrightarrow det $(\vec{u}, \vec{v}) = 0$.

Vectors in Space

A vector \vec{u} in space is written as $\vec{u} = [x, y, z]$ where $x, y, z \in \mathbf{R}$. Rules of Calculation

For $\vec{u} = [x_1, y_1, z_1]$, $\vec{v} = [x_2, y_2, z_2]$, and $c \in \mathbf{R}$, we have:

$$\vec{u} \pm \vec{v} = \begin{bmatrix} x_1 \pm x_2 \\ y_1 \pm y_2 \\ z_1 \pm z_2 \end{bmatrix}, \qquad c\vec{u} = \begin{bmatrix} cx_1 \\ cy_1 \\ cz_1 \end{bmatrix},$$
$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

The length of \vec{u} is $\|\vec{u}\| = \sqrt{x_1^2 + y_1^2 + z_1^2}$. The cross product is given by:

$$\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

The Angle Between Two Vectors

For the angle θ between \vec{u} and \vec{v} , we have:

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}, \quad \sin\theta = \frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\| \|\vec{v}\|}$$

Furthermore:

- 1. \vec{u} and \vec{v} are orthogonal $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$.
- 2. \vec{u} and \vec{v} are parallel $\Leftrightarrow \vec{u} \times \vec{v} = 0$.

Lines and Planes

The plane/line through the point with position vector \vec{x}_0 and normal vector \vec{n} is described by all vectors \vec{x} that solve the equation:

$$\vec{n} \cdot (\vec{x} - \vec{x_0}) = 0$$

A line in space or in the plane through the point with position vector \vec{x}_0 and direction vector \vec{r} has the parametric representation:

$$\vec{x}_0 + t\vec{r}, \quad t \in \mathbf{R}.$$