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1 Introduction

The present document summarizes the results of the simulation study of a SLR with a rated power of
10 MW.

The documentation comes with simulation models built in PLECS.

2 Simplifying Assumptions

The following simplifying assumptions have been made:

• ideal semiconductors

• ideal transformer

• lossless resonant tank components

3 Calculations

It is assumed that the three-phase generator has an output line voltage of Vgen = 690 V (AC RMS). The
uncontrolled diode rectifier fed from this generator will have as output voltage:

VgenDC =
3
√

2

π
Vgen = 1.35Vgen ≈ 930 V (DC) (1)

Ideally, this voltage will be pure, ripple-free DC (as will be assumed subsequently) and feeds a full-
bridge inverter with IGBTs. The inverter will produce a high frequency square-wave voltage (Vinsq ) to
drive the resonant tank. The switching frequency is chosen to be fs = 1 kHz To simplify the analysis,
only the fundamental of the square wave voltage Vinsq will be accounted for. The peak value of the
fundamental of the square-wave will be:

V̂in1 =
4

π
VgenDC ≈ 1185 V (AC peak) (2)

The RMS value of the fundamental can be calculated as:

Vin1
=
V̂in1√

2
=

2
√

2

π
VgenDC ≈ 840 V (AC RMS) (3)

At resonance the LC-tank has zero impedance, which results (ideally) in zero voltage drop. However,
the voltage across the inductor and the capacitor are far from zero, although their sum is (they are shifted
by 180◦, but have the same magnitude). It is also known for a fact that this voltage stress is maximal at
resonance and can reach prohibitive values. To reduce the stress on the insulation, the converter will need
to operate at frequencies below (or above) resonance. The rated operating point has to be chosen at such
switching frequency. The difference between the switching frequency (fs) and the resonant frequency (f0)
will have an influence on the quality factor of the resonant circuit (Q). For a larger difference in frequency
Q will be smaller, due to the smaller bandwidth of the resonant tank and vice-versa. The departure from
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resonance also implies that there will be a non-zero voltage drop across the resonant tank, which will
now consume (or produce) reactive power that needs to be kept within bounds. The design procedure
laid out in the following will take this fact into account.

As a simplification, throughout this document it will be assumed that only the fundamental plays a
noteworthy role in the energy transmission. In reality, the harmonics may be neglected only if the quality
factor is sufficiently large, implying a narrow bandwidth of the resonant tank.

The resonant tank will operate in inductive, that is sub-resonant mode. The voltage across the tank will
be calculated such as to produce a ∆ = 5 % decrease in magnitude of the fundamental of the transformer
primary voltage compared to resonance conditions: VR = (1−∆) × Vin1

= 0.95 × Vin1
= 798 V. The

voltage vector of the resonant tank is perpendicular on the voltage of the transormer primary, thus:

Vtank =
√
V 2
in1
− V 2

R = Vin1

√
1− (1−∆)

2
(4)

With the output power known (Pout = 10 MW), the equivalent load resistance, as perceived by the
resonant tank can be determined:

Re =
V 2
R

Pout
=

(1−∆)
2
V 2
in1

Pout
(5)

accordingly, the total reactance of the tank can be calculated as:

Xtank =
Vtank
Iin1

=
V 2
in1

(1−∆)

√
1− (1−∆)

2

Pout
=
V 2
in1

(1−∆)
√

∆ (2−∆)

Pout
(6)

Once the switching frequency and the resonant frequency are chosen, it is possible to set up a system
of two equations to find the values of L and C:{

ωsL− 1
ωsC

= Xtank

ω0L− 1
ω0C

= 0
(7)

For the current application, with fs = 1000 Hz and f0 = 1050 Hz, the following values for the resonant
tank components were found: L = 137.97 µH and C = 179.26 µF.

The transformer winding ratio can be found after calculating the transformer secondary voltage, if the
voltage at the output has to be VMVDC = 70 kV:

n =
VR2

VR
=

2
√
2

π VMVDC

VR
≈ 0.9VMVDC

VR
≈ 79 (8)

In case a resistive load is used, smoothing capacitor may be needed at the output of the converter. Its
value will be chosen such as to obtain 1 % voltage ripple (peak-to-peak). The general formula for the
voltage ripple is:

∆V =
∆Q

CF
(9)

The change in electrical charge of the capacitor (∆Q) is the product of the charging (discharging)
current and the charging (discharging) interval:

∆Q =

∫ 3π
4

π
4

i(ωt)d(ωt)− π

2
IDC =

4− π
2

IDC (10)

Since a charging takes 1/4 of the resonance frequency, the capacitance is:

CF =
∆Q

∆V
=

(4− π)

√
Pout
R

8f0∆V
≈ 2.192× 10−5 F (11)

If the smoothing capacitor is to be split in two series capacitors (i.e. to be able to ground the centerpoint
of the DC output), the value of each capacitor will be twice the one just calculated: CFs = 4.384× 10−5 F.

The simulation was performed with the load modelled as the Thévenin equivalent of a voltage source,
since the substation boosting the MVDC to HVDC will work with voltage control. In this case the
capacitors at the output of the converter represent the capacitance of the MVDC cable.

2



The frequency can be expressed as a function of the load current. The starting point is the equation
of the voltage drop across the resonant tank:

I =
Vtank
Ztank

(12)

After replacing Vtank and Ztank:

I =
ωsC

√
V 2
in1
− V 2

R

ω2LC − 1
(13)

Assuming that the input and the output voltage are constant, the expression also represents the
relationship between frequency and power:

f1,2 =

∣∣∣∣∣∣∣
C
√
V 2
in1
− V 2

R ±
√
C2
(
V 2
in1
− V 2

R

)
+ 4LCI2

4πLCI

∣∣∣∣∣∣∣ (14)

The two solutions are for sub- (−) and super-resonant (+) operation, respectively. The formula is
suited for a simple feedforward control.

4 State Space Model of the System

The system is nonlinear, yet there is the possibility of linearizing it, which largely simplifies the control
design procedure. In order to achieve this goal, the rasonant tank will be represented in d−q coordinates.
Again, only the fundamental will be taken into account. By superposition, effect of the harmonics may
be modelled.

Starting from the equation:

V 2
in1

= V 2
R + V 2

tank (15)

and by denoting the angle between VR and the d axis to be θR, the following decomposition can be
found: Vind = VR cos θR + Vtank cos

(π
2

+ θR

)
Vinq = VR sin θR + Vtank sin

(π
2

+ θR

) (16)

or: 
Vind = VRd + Iq

(
ωsL−

1

ωsC

)
Vinq = VRq − Id

(
ωsL−

1

ωsC

) (17)

Taking advantage of the fact that the angle θR can be chosen arbitrarily, some components, namely
VRq and Iq can be eliminated. (The angle between them will be zero as long as the load can be considered
purely resistive.) To achieve this, θR = 0:Vind = VRd

Vinq = −Id
(
ωsL−

1

ωsC

)
(18)

These relationships can be replaced in the equations describing the system. The general state-space
model may now be written as: {

ẋ = Ax + Bu

y = Cx
(19)

For the studied system, this translates to:

x =
[
id iq vCd vCq v0 i0

]T
(20)
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A =



0 ωs − 1

L
0 0 0

−ωs 0 0 − 1

L
− 4

πL
Xtank

1

C
0 0 ωs 0 0

0
1

C
−ωs 0 0 0

0 0 0 0 0 − 1

L0

0 0 0 0
1

C0
0



(21)

u =
[
vind vinq

]T
(22)

B =



2

πL0
0

0 0

0 0

0 0

0 0

0 − 1

C0



(23)

where L0 and C0 are the inductance and the capacitance of the output filter. The capacitance of the
underwater cable can also be lumped into C0.

y =
[
v0 i0

]T
(24)

C =
[
0 0 0 0 1 1

]
(25)

The derived state space model has the limitation of being valid only for a given frequency, therefore,
it can be successfully used only for phase-shift control at fixed frequency.

5 Simulation Model

The schematic of the simulated circuit can be seen in Fig. 1.

Figure 1: Schematic of the simulated SLR
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6 Simulation Results

The results of simulation for steady-state are presented in the subsections below.
The no-load voltage of the converter is VMVDC0

= 77.5 kV (independently on the switching frequency).
Under short-circuit conditions the current reaches a peak value of Îsc = 1 kA (when the switching

frequency is the one used for rated load).
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6.1 SLR in Inductive Mode

Figure 2: SLR resonant tank and output current waveforms (at 100 % load, inductive)
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Figure 3: SLR resonant tank and output current waveforms (at 75 % load, inductive)
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Figure 4: SLR resonant tank and output current waveforms (at 50 % load, inductive)
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Figure 5: SLR resonant tank and output current waveforms (at 10 % load, inductive)
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Figure 6: SLR resonant tank and output current waveforms (at 150 % load, inductive)
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6.2 SLR in Capacitive Mode

Figure 7: SLR resonant tank and output current waveforms (at 100 % load, capacitive)
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Figure 8: SLR resonant tank and output current waveforms (at 75 % load, capacitive)
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Figure 9: SLR resonant tank and output current waveforms (at 50 % load, capacitive)
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Figure 10: SLR resonant tank and output current waveforms (at 10 % load, capacitive)
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Figure 11: SLR resonant tank and output current waveforms (at 150 % load, capacitive)
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7 Files

The following files contain simulation models and scripts:

• resonant_tank_design.m – Matlab script to design the resonant tank, as described previously

• FullBridgeSLR_Q20_newres.plecs – Plecs model of the resonant converter, with voltage source
to model the MVDC grid

• FullBridgeSLR_Q20_phsh.plecs – Plecs model of the resonant converter, with phase shift control

• FullBridgeSLR_simple.plecs – Plecs model of the resonant converter, without XFO

• FullBridgeSLR_smallsignal.plecs – Plecs model of the resonant converter, set up for small signal
analysis

The old directories contain previous attempts to simulate the converter.
In all cases, the parameters of the circuit can be modified by going to:
Simulation -> Simulation parameters... -> Initialization.
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