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Abstract
The company Welltec has an agile manufacturing system due to their dynamic and complex mix of production orders.
Therefore, commonly used performance metrics such as utilization of machinery and Overall Equipment Effectiveness
(OEE) do not prove to be reliable indicators of the production’s performance. Hence, this paper aims to develop and
propose a more reliable production metric which Welltec can use to evaluate the performance of their production.
Thus allowing Welltec to more accurately determine the effect of investments in their numerous processes and agree
upon their asset distribution. The metric is based upon parameters such as order type, size, part complexity, and the
order composition. Estimating process parameters allowed for a Discrete Event Simulation to calculate the theoretically
possible output of the production, which is compared to the actual production. The result is a ratio that more accurately
depicts the efficiency of the production, with the current and/or expected order composition.
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1. Issues with the currently used metric
Welltec delivers intervention and completion solutions
as a service to the oil well industry. Their original
product is the Well Tractor® which serves the
purpose of tool transportation through oil pipelines.
Welltec produces most of the mechanical parts
required for their products in-house. Therefore, the
production department has to be able to produce
batches of parts from a catalogue which covers a
vast amount of different part designs. Hence, the
work distribution between the production processes
shifts periodically which complicates evaluating the
production’s performance. Currently, Welltec uses
utilization of their CNC machines as a performance
metric. This metric is used to monitor and evaluate
past production by the Component Production Manager
and upper management. However, utilization of
specific resources may not be an accurate measure
for production performance as the measure is not
directly linked to value adding activities, which result
in closing production orders. For instance, a production
may achieve high utilization of their resources by
producing excess parts to stock. These issues also
apply to the performance metric Overall Equipment
Effectiveness (OEE) which is commonly used to assess

the performance in mass production. OEE incorporates
the production’s availability, performance, and quality
into a single metric which provides a reliable measure
for productivity. However, it is still possible to achieve
a high OEE by producing excess parts to stock.

Welltec has a complex order composition which
covers planned, R&D, and urgent orders. These orders
differ on factors such as order size, part size, and
complexity. This highly dynamic order composition
affects the operators’ work distribution. For each
production order, the operators must prepare tools and
setup the CNC. Furthermore, if the order has not been
produced previously, the operator also has to program
CAM files for the CNC and conduct a possibly more
time-consuming tool preparation and setup of the CNC
than if the order has been produced previously.

As seen below on Figure 1, this complex order
composition leads to periods where Welltec’s production
achieves vastly differing levels of utilization on their
resources. In these periods, the operators may have had
the same productivity, however, this can not be seen
from the utilization of the CNC resources. Thus, the
upper management can have a difficult time grasping the
production’s productivity. Therefore, there is a need for
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Fig. 1 Average utilization of CNC machines in a single cell over a 30-day period.

a production metric which takes the order composition
for a given period into account. Such a metric should
provide a more reliable indicator of the production’s
performance.

2. Developing and proposing a production metric
The order composition’s effect on the production’s
output can be simulated with Discrete Event Simulations
(DES). Therefore, this section describes how DES can
be utilized to devise a performance metric for Welltec’s
production.

2.1 Explanation of the devised production metric
One important indication concerning the production’s
performance is the number of closed production orders.
At Welltec, this number is highly affected by the order
mix over a certain period of time. Therefore, due to
the high variability in order mix, it is difficult to
determine if the production’s output over a given period
is relatively low or high. However, if an ideal output is
obtainable, then the ratio between the actual output and
the ideal output can be used to predict the performance
of the production’s resources for a given order mix. The
formula seen in Equation 1, can be used to compute the
performance of the production’s resources.

Performance =
Actual # of orders closed
Ideal # of orders closed

· 100% (1)

However, to use the equation above, it is necessary to
know the ideal number of closed orders. Fortunately,
it is possible to predict the ideal output within a
simulation. If the order composition and historical data
are logged from the production, statistical tools can
be used on the data to extract empirical distributions
describing the relationship between the time spent
on the individual production processes and the order
composition. Hereby, these empirical distributions can
be used in connection with a new order composition
to predict an estimate for the ideal number of closed
orders.

In the DES, an empirical distribution can be determined
and used as input, alongside with an arbitrary order
composition. Thus, the DES can be used to simulate
the production’s flow for a given order mix and output
the ideal number of closed orders. Furthermore, it
would be ideal if the devised performance metric can
be used both as an operational and developmental tool.
Meaning, that the simulation can be used to evaluate
the performance of past production as well as test
future adjustments conducted to the production before
implementation. In both cases, the same DES can be
used but with two differing data sets describing the
production’s characteristics. By having two data sets,
the first data set can be used to simulate the behavior of
the current setup whereas another data set can be used
to simulate the behavior of the optimal production or
an implementation of future changes. The methodology

2



proposed in this report for using DES as an operational
tool to determine the production’s performance is
illustrated by Figure 2.

Fig. 2 The figure illustrates the methodology proposed for
using the DES as an operational tool for evaluating past
production.

As seen from Figure 2, the actual order mix and
output of the production is logged for a given period.
Once this period is over, the logged order mix is then
used as input for the simulation. Hereby, the empirical
distributions without bottlenecks can be used to simulate
the maximum output for the given order mix. Once the
actual output and simulated output has been achieved,
these numbers are inserted into Equation 1. Using the
formula, the performance should result in a percentage
between 0% and 100%. The determined performance
can then be used by the component production manager
and upper management as a measure for assessing
the production’s operation. For this metric to work,
relevant input parameters and empirical data of high
quality must be available. Therefore, the next section
covers determining these input parameters as well as
determining necessary data which must be logged from
the production.

2.2 Relevant input parameters for the DES
The process of identifying, specifying, and gathering
relevant input parameters for the DES is inspired
by the methodology presented in "A methodology
for input data management in DES projects"[1].
In the article, four steps precede the creation of a
input data sheet for the DES. These steps include
identifying relevant input parameters, specifying the

parameters’ accuracy, and determining availability of
the parameters. Furthermore, if relevant, the fourth
step is selecting data collection tools for gathering
unavailable parameters. In this report, these four steps
are conducted for the input parameters related to
order mix as well as the production parameters of
the individual processes conducted by Welltec. The
parameters listed below have been identified to describe
Welltec’s production in the DES at a sufficient level of
detail.

Input parameters related to the order mix:

• Order type
• Order size
• Recurring part
• Part size
• Part complexity

Process parameters related to the production:

• CAM-programming
• Tool preparation
• Precutting of materials
• CNC setup
• CNC milling

The identified input and process parameters are
described more in-depth below.

Input parameters related to the order mix:
The input parameters describe the specifics of an order
composition. These are the parameters which change
the operators’ work distribution between processes
from time to time. Thus, it is important to identify and
collect data for relevant input parameters to achieve
a DES which can simulate Welltec’s production with
sufficient quality and accuracy. Firstly, the relevant
input parameters are described below.

Order type: Welltec has three types of production
orders. These include: planned orders, R&D, and
urgent orders. Thus, the production order type has
significant impact on the probabilities and distributions
within each production process. For instance, it is
more likely that a planned order contains parts with
small changes - and therefore might on average require
less CAM and setup time. Similarly, the order type
affects other parameters; an order is more likely to
contain recurring parts if it was planned compared
to a R&D order. Also, the order size is more likely
to be larger if the order is planned, compared to
R&D and especially urgent orders. All the mentioned
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relationships require data gathering in order to get
representative distributions describing the cycle times
for each. The input parameter is available for the DES
as Welltec already logs an order’s type.

Order size: The order size impacts the total amount of
required CNC time. The total CNC time is assumed
to be the CNC time for a single part multiplied by
the order size, and the relationship is thus known to
be proportional. The same principle applies to the
precutting process which is also affected by the order
size. The order size is also a value which is logged by
Welltec. Therefore, this value is available for simulation.

Recurring part: If a part is recurring and has been
produced before it affects primarily the CAM-time,
as it is assumed no CAM-work is required. It also
affects setup time as there are fewer unknowns with
recurring parts, and therefore less careful setup is
needed. It might also slightly affect CNC time as the
CAM-program might have been optimized during the
previous productions. The setup and CNC relationships
require data gathering in order to build distributions for
both recurring and new parts. Currently, Welltec already
logs whether a part has previously been produced.
Therefore, no additional logging is required to obtain
the input parameter.

Part size: Another input parameter which affects
the production’s productivity is the size of the parts in
an order. This parameter directly affects the CNC time
as larger parts generally would need more processing.
Welltec has the CAD-files for their production orders,
thus, it is possible to gather this parameter.

Part complexity: The complexity of the produced
parts impacts all the processes in the production. A
more complex part will require more CAM-time, more
setup time, and the CNC mill will generally take
longer to finish a part. The part might also need several
passes in the CNC mill if it needs to be rotated in
order to reach all surfaces which require machining.
As the complexity impacts so many processes it is
crucial to implement in the DES in order to get an
accurate simulation. Most importantly - and contrary
to the previously mentioned parameters - no readily
available measure for part complexity exists for data
gathering. It is therefore important to find a way to
measure complexity in order to observe the impact it
has on the aforementioned processes. The complexity

itself is initially assumed to be independent from all
other parameters, but it is important to verify this
when gathering data. As the quality of the DES heavily
relies on this parameter, Section 2.2.1 is dedicated to
researching part complexity further.

Process parameters related to the production:
An array of process parameters such as cycle time of
the individual processes are affected by the composition
of production orders. Thus, to achieve a DES that can
simulate production output based on order composition,
data from these processes must be logged in relation
to the individual orders. Statistical tools can then be
applied to the logged data over a given period of
time, to determine the relation between the individual
production processes and specific order parameters.
The relevant production parameters are described below.

CAM-programming, tool preparation, and precutting of
materials: The cycle time of the CAM-programming,
tool preparation, and precutting processes for the
individual orders must be logged to determine the
processes’ correlation to the parameters listed for order
mix. Currently, this parameter is not logged by Welltec.
However, a solution is under implementation which
will enable Welltec to log the operators’ time spent on
these orders. For the collected data to be usable for
the DES, the time spent must be logged and associated
with the ongoing production order.

CNC setup: CNC setup must also be logged to
obtain empirical distributions for the various order
mixes. This metric is not obtainable yet, however,
Welltec is in the process of implementing a solution
which enables the operators to specify the setup
time used on the CNC machines. The logged setup
time should include placing precut parts in vices,
installation of CNC tools, and actual setup of the CNC.
Furthermore, the logged data should also be associated
to the order that is being worked on by the operator.

CNC milling: Currently, an event log of the CNC
is logged by a sub-contractor’s Manufacturing Data
Collection (MDC) software. This event log includes
information such as the program being run on the CNC
mills as well as part processing cycle times. Therefore,
this parameter is collectable and can be used in the DES.

The input and process parameters have now been
identified and described. Part complexity has not been
fully defined yet, this is the subject of the next section.
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2.2.1 Complexity measure
Part complexity is directly linked to factors such as
the part’s geometry. A complex geometry commonly
requires more CAM time, setup time, and milling time.
Since the parts on the CNC machines are designed in
CAD, it is preferable to base the measure of complexity
on the information available in the CAD-part. Thus, the
measure of complexity can be obtained prior to starting
production. Currently, there is no standard for defining
CAD-model complexity. An array of parameters which
can be a measure of a part’s complexity include, but is
not limited to[2]:

• Number of triangles/vertices in an STL-file of the
part

• The surface area of the part
• The volume of the part
• The volume of the part’s bounding box
• The number of features used to create the part
• The time used to draw the part
• The ratios between respective parameters

One article studying CAD complexity is "An investi-
gation and evaluation of computer-aided design model
complexity metrics"[2]. In this article, an array of CAD-
models varying in complexity were evaluated by 169
respondents. These CAD-models’ complexity ratings
were then compared to a set of geometric complexity
metrics such as surface area and cube ratio. The article
found that the geometric complexity metric which was
most positively correlated with the respondents’ rating
of part complexity, was the ratio between the part’s
volume and the volume of a bounding box fitted to the
part. Equation 2 illustrates this ratio.

CV = 1− VP

VB
, (2)

where VP is part volume, VB is bounding box volume

Using the formula results in a complexity value (CV)
between 0 and 1, where a higher number represents a
more complex part. It is evident from the construction
of the equation, that a large bounding box and a
small part volume would result in a complex part.
Roughly, this means that a part that requires removal of
a large percentage of material is deemed a complex part.

However, this is based upon a paper which investigates
CAD-files in general. It is therefore desirable to confirm
whether the same correspondence is present in parts
relevant to Welltec’s production. As the exact designs

of Welltec’s components are secret, a number of
standard components has been chosen. 12 components
that could typically be produced by turning or milling
operations have been chosen. These are:

1) Compressor impeller
2) 48-teeth gear
3) Hydraulic manifold
4) Weld flange
5) Pulley wheel
6) Worm gear housing
7) Arm bracket
8) Timing belt clamp
9) Shaft coupler

10) Linear rail bracket
11) Spindle motor bracket
12) Worm gear

Illustrations of the 12 components can be seen on Figure
8 in the Appendix. Two parts have been deliberately
chosen to challenge the formula, as examples of what
types of parts could produce misleading results. Part
no. 3, the hydraulic manifold, is expected to produce
a lower complexity value than the part requires.
Conversely, part no. 4, the weld flange, is expected
to produce a higher complexity value than the part
requires.

To be able to evaluate the precision of the complexity
value, all parts have been evaluated and given a score
between 1 and 3, with 3 being the most difficult
to produce. The evaluation has been conducted in
cooperation with an independent machinist with
relevant CNC and CAM experience. On Table I, the
results can be seen sorted by increasing evaluated
difficulty.

The difficulty of each part is plotted against the
complexity value, in order to give an idea of the
correlation between the two. The result can be seen on
Figure 3. There are three data points which are clear
outliers. Two of those were deliberate as mentioned
earlier (Marked with blue no. 2 and no. 3) the third one
(no. 1) was however not intentional. This is the Linear
Rail Bracket (part no. 10) and it is most likely due to the
fact that the component has both a large hole as well as
two small flanges which result in a higher-than-expected
CV.

The hydraulic manifold is more complex than the
complexity value would suggest. This is due to the
fact that not much material is removed from the block,
which additionally fits neatly inside the parts bounding
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box. However, the many long canals in the block
require several changeovers in the CNC-machine, and
while the CAM-program is not necessarily difficult, the
machining operation is time consuming.

The weld flange is less complex than the complexity
value would suggest. The flange is a simple geometry,
but the circular shape paired with its large hole results
in a volume much lower than its bounding box, in turn
resulting in a high complexity value.

If the outliers are omitted however, there is a clear
correlation between complexity value and assessed
difficulty. The complexity has initially been sorted into
three categories for ease of implementation in the DES.
This is due to the fact that no such data exists from
Welltec’s production, and the data used in the DES
will be estimates. When the actual data will be logged
it could be beneficial to break down the categories
even further and score them on a scale with smaller
increments. For the initial DES, the three categories

has been scored by visually fitting the two graphs by
adjusting the axes. Afterwards, the categories were
defined by dividing halfway between the assessed
difficulty levels. This results in the following intervals:
(visually illustrated on Figure 4):

• Category 1: CV of 0-0.42 (marked green)
• Category 2: CV of 0.43-0.70 (marked yellow)
• Category 3: CV of 0.71-1 (marked red)

It is important to be aware of instances like the
mentioned outliers. These outliers are a testimony to
the fact that, while the complexity value does provide
a useful guideline, it cannot stand alone. Thus, it
is important to have an engineer or machinist with
relevant experience evaluate parts which could produce
misleading complexity values. The complexity value
could be modified, as the formula presented in [2]
addresses CAD parts in general, whereas only parts for
CNC machining have relevance for this project. Such
a modification could for instance be to use the volume
of the raw material rather than the bounding box. This

Tab. I Data of CAD-parts sorted by increasing evaluated difficulty.

No. Description Volume
(mm3 · 103)

Bounding box
(mm3 · 103)

CV Difficulty

8 Timing Belt Clamp 1.5 1.8 0,16 1
9 Shaft Coupler 6.4 9.9 0,35 1
10 Linear Rail Bracket 9.5 21.5 0,56 1
4 Weld Flange 152.3 1012.5 0,85 1
3 Hydraulic Manifold 2273.2 2508.0 0,09 2
5 Pulley Wheel 1.8 3.6 0,50 2
11 Spindle Motor Bracket 152.9 403.0 0,62 2
12 Worm Gear 822.7 2263.3 0,64 2
2 48-teeth Gear 415.6 1381.4 0,70 2
6 Worm Gear Housing 307.9 1152.2 0,73 3
7 Arm Bracket 24.1 162.3 0,85 3
1 Impeller 39.8 396.0 0,90 3

Fig. 3 Comparison of complexity value and actual difficulty.
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Fig. 4 Division of the Complexity Value into three complexity categories.

would likely catch unreasonably high complexity values
such as the weld flange. Such parts would likely be
manufactured from a hollow bar which already contains
the hole in the flange. It is however important to note
that if the raw material is larger than the bounding box,
the bounding box should still be used. This is in order
to not get exaggerated complexity values on parts which
use larger-than-needed raw material due to low stock,
odd dimensions etc.
The presented complexity value provides a sturdy
backbone for evaluating the complexity of parts, and
expanding the metrics used could result in a formula
which would not require human interaction. With the
use of machine learning additional data such as those
mentioned earlier (STL triangles, surface area, time
consumption during CAD-drawing etc.) could be logged
and compared to an evaluation of the difficulty by a
professional, eventually resulting in an automatic and
precise calculation of a complexity value.

2.3 Modelling the DES for predicting output based
on order composition
The input and process parameters required to compute
the production metric have now been identified. Thus,
a DES which can predict the output of Welltec’s
production based on order mix can now be modelled.

Following the methodology presented in the previously
mentioned article[1] regarding input data management,
the next step is to create a data sheet for the DES.
Since the data to describe the important but complex

interdependency between the identified input and
production parameters is not available, it has been
decided to generate this data sheet. The generated data
has been estimated based on the group’s knowledge
about Welltec’s production as well as logical decisions
such as complex parts requires more milling time than
lesser complex parts.

The DES that was modelled in Enterprise Dynamics
can be seen in Figure 6. This DES provides Welltec
with an indication of what potentially can be gained in
terms of future operational and development decisions
by adopting the proposed production metric. Welltec
has a complicated flow and available resources which
varies in periods, for instance, at a given point in
time two operators could be assigned to the same
task which can lower the individual processes’ cycle
times. As it is not trivial to simulate this kind of
behavior, the DES is only valid for one scenario.
This scenario is devised for the purpose of this paper,
where one operator has the responsibility for the CAM-
programming, tool preparation, and setup of an order.
This operator prepares both recurring and new orders
for production in the time interval 07:00 to 13:00. After
13:00, the same operator only prepares known orders
for 2 hours. In the devised scenario, this results in 1-2
orders which are ready for the CNC. These orders can
then be processed by the CNC in the time span from
15:00 to 07:00. Thus, if the production flow changes and
does not correspond to this scenario, then the simulation
has to be changed.
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Fig. 5 The figure illustrates the method used to generate production orders. The specific probability mass functions and probability
density functions used in the method have been estimated by the authors.

A scenario for the DES representing the ideal
production is also required to compute the performance
metric presented in Equation 1. In the scenario for
the ideal production, the operator can perform orders
with recurring parts and orders with new parts between
07:00 and 15:00. After 15:00, the production system
works autonomously on prepared orders and orders
with recurring parts until the operators arrive the next
morning.

If the performance metric is to be used as an
operational tool, the input parameters related to the
order mix should be based on historical data. However,
as it has not been possible to acquire such data from
Welltec, the order composition has been generated
based on probability tools. Figure 5 illustrates how
data was generated for the two DES’s. The probability
tools described in the figure aim to generate production
orders which mimic tendencies which are expected
in Welltec’s order composition. For instance, if the
generated order is of the planned type, then it is more
likely to be a large order with a recurring part than if
the order type was R&D or urgent.

To generate the DES’s process parameters, a method
which is similar to the one presented above is used.
The generated process parameters are directly affected
by the currently processed order’s composition. For

Fig. 6 Screenshot of the devised metric Discrete Event
Simulation

example, if the order’s complexity level is high, then
CAM, tool preparation, setup, and CNC milling is
likely to require more time than orders of lower
complexity. The method for generating the process
parameters can be seen on Figure 7. The probability
density functions seen in the figure, should be based
on the true relationship between the order composition
and process parameters. This relationship can be
extracted from data which Welltec should log in their
production processes. Since the relationship is not
obtainable yet, the probability density functions used
in the DES’s have been estimated by the paper’s authors.

The DES of the current and ideal production has
been modeled. Therefore, it is now possible to use the
production metric as an operational tool and compare
performance for the different order mixes to test the
metric.

3. Testing the production metric
A set of scenarios has been formed to test the devised
production metric. These scenarios differ in order
composition to test if the production metric is able to
reliably produce a viable indicator which can be used to
evaluate the production’s performance. In the scenarios,
the probability mass function (see Figure 5) used to
draw an order’s type has been altered which implicitly
also affects the generated order’s size and if the order’s
part is recurring. Therefore, the production orders in the
scenarios are dominated by specific order types to test
how this affects the production metric. The six devised
scenarios are shown in Table II.

The six scenarios presented in the table have been
inputted individually into the DES for the current and
ideal production. The results can be seen in Table
III, and show that the current performance is close
to identical for the six scenarios. This is due to the
inherent positive correlation between the current and
ideal models as they have been formed with the same
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Fig. 7 Illustration of the method used to generate process parameters based on order composition. The specific probability density
functions used in the method have been estimated by the authors.

production processes and flow, while being inputted
with identical order compositions. The DES’s have
different distributions for process parameters, but since
identical order compositions are inputted to the system,
the process parameters of the simulated current and
ideal production are affected by a similar proportion.
Therefore, when an identical order composition is
inputted to the two DES’s, the number of closed orders
remains correlated. This indicates that the devised
production metric can be utilized by management to
estimate the performance of an agile production setup
with varying order compositions.

As seen from Table III, the current CNC utilization
is greatly affected by the varying order composition.
However, as the order composition was the only
parameters which was altered in the simulation, the
current and ideal production had the same resources
available in the six scenarios but with different process
work distributions. Therefore, the CNC utilization may
provide management with an unreliable performance
indicator which does not reflect the value added by the
operators in the production.

The simulated results also provide an interesting
point which highlights an additional benefit of using
the devised production metric as a performance

indicator instead of CNC utilization which is currently
used by Welltec. Scenario 2 is highly dominated with
orders of the planned order type. In the simulations,
orders of this type are more likely be large size orders
with recurring parts. Therefore, the CAM programming
process is expected to be negligible while the CNC
milling process may be more time-consuming as a large
number of parts have to be produced. This facilitates
a relatively high utilization of the CNC but with a
lower number of closed orders. Therefore, as seen in
Table III, the current production setup only closes 26
orders while having a CNC utilization of 29%. This is
contradictory to scenario 2, as it has the lowest number
of closed orders but the highest CNC utilization of
all the simulated scenarios. Hence, there is a poor
connection between CNC utilization and the number of
production orders closed.

4. Conclusion
A new production performance metric has been devised
in this paper which can be used as an operational
and development tool. The metric takes the order
composition for a given period of time into account, and
thus, it is more robust to the changes in work distribution
which can be experienced in a highly agile production
like Welltec’s. As a result of this robustness, the metric
can be used by management as a "speedometer" for

Planned [%] R&D [%] Urgent orders [%]
Senario 1: 33.33 33.33 33.33
Senario 2: 80 10 10
Senario 3: 10 80 10
Senario 4: 10 10 80
Senario 5: 45 10 45
Senario 6: 10 45 45

Tab. II The six devised scenarios with differing probability mass function for order type.
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Current
Output [order]

Ideal
Output [order]

Current
Performance [%]

Current
CNC utilization [%]

Scenario 1: 31 57 54% 22%
Scenario 2: 26 47 56% 29%
Scenario 3: 31 60 52% 19%
Scenario 4: 41 76 54% 17%
Scenario 5: 32 55 58% 23%
Scenario 6: 35 66 53% 18%

Tab. III The simulated number of closed orders for the current and ideal production in the six scenarios. The performance of the
current production setup has been computed with the formula presented in Equation 1. Additionally, the current CNC utilization
in the six scenarios is also presented. The results are based on 1000 observations with a 1-week warmup followed by a 4-week
simulation period.

evaluating the performance of the production. Further
work must be conducted before the metric is ready
and can be implemented. The cycle time distributions
for different processes in the DES are all based on
estimates made by the group, and must be updated with
real-world data before the metric is implemented. This
update of cycle time distributions should be conducted
once a month for at least 1-1.5 years to ensure that
the DES uses the right distributions when calculating
the performance of the production. The part complexity
metric must be tested to determine if the proposed
metric is also applicable to the parts produced. If not,
further work should be conducted to determine a more
sufficient definition of the complexity metric. Once
these tasks have been completed, it is believed that the
devised production metric can be used as an operational
and development tool.
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Appendix

Fig. 8 The 12 different CAD files used for evaluating complexity.
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